235 research outputs found
Weak effects of electron-phonon interactions on the lattice thermal conductivity of wurtzite GaN with high electron concentrations
Wurtzite gallium nitride (GaN) has great potential for high-frequency and
high-power applications due to its excellent electrical and thermal transport
properties. However, enhancing the performance of GaN-based power electronics
relies on heavy doping. Previous studies showed that electron-phonon
interactions have strong effects on the lattice thermal conductivity of GaN due
to the Fr\"ohlich interaction. Surprisingly, our investigation reveals weak
effects of electron-phonon interactions on the lattice thermal conductivity of
n-type GaN at ultra-high electron concentrations and the impact of the
Fr\"ohlich interaction can be ignored. The small phonon-electron scattering
rate is attributed to the limited scattering channels, quantified by the Fermi
surface nesting function. In contrast, there is a significant reduction in the
lattice thermal conductivity of p-type GaN at high hole concentrations due to
the relatively larger Fermi surface nesting function. Meanwhile, as p-type GaN
has relatively smaller electron-phonon matrix elements, the reduction in
lattice thermal conductivity is still weaker than that observed in p-type
silicon. Our work provides a deep understanding of thermal transport in doped
GaN and the conclusions can be further extended to other wide-bandgap
semiconductors, including -Ga2O3, AlN, and ZnO
Genetic variation and relationships of eighteen Chinese indigenous pig breeds
Chinese indigenous pig breeds are recognized as an invaluable component of the world's pig genetic resources and are divided traditionally into six types. Twenty-six microsatellite markers recommended by the FAO (Food and Agriculture Organization) and ISAG (International Society of Animal Genetics) were employed to analyze the genetic diversity of 18 Chinese indigenous pig breeds with 1001 individuals representing five types, and three commercial breeds with 184 individuals. The observed heterozygosity, unbiased expected heterozygosity and the observed and effective number of alleles were used to estimate the genetic variation of each indigenous breed. The unbiased expected heterozygosity ranged between 0.700 (Mashen) and 0.876 (Guanling), which implies that there is an abundant genetic variation stored in Chinese indigenous pig breeds. Breed differentiation was shown by fixation indices (FIT, FIS, and FST). The FST per locus varied from 0.019 (S0090) to 0.170 (SW951), and the average FST of all loci was 0.077, which means that most of the genetic variation was kept within breeds and only a little of the genetic variation exists between populations. The Neighbor-Joining tree was constructed based on the Nei DA (1978) distances and one large cluster with all local breeds but the Mashen breed, was obtained. Four smaller sub-clusters were also found, which included two to four breeds each. These results, however, did not completely agree with the traditional type of classification. A Neighbor-Joining dendrogram of individuals was established from the distance of – ln(proportions of shared alleles); 92.14% of the individuals were clustered with their own breeds, which implies that this method is useful for breed demarcation. This extensive research on pig genetic diversity in China indicates that these 18 Chinese indigenous breeds may have one common ancestor, helps us to better understand the relative distinctiveness of pig genetic resources, and will assist in developing a national plan for the conservation and utilization of Chinese indigenous pig breeds
Genetic relationships among twelve Chinese indigenous goat populations based on microsatellite analysis
Twelve Chinese indigenous goat populations were genotyped for twenty-six microsatellite markers recommended by the EU Sheep and Goat Biodiversity Project. A total of 452 goats were tested. Seventeen of the 26 microsatellite markers used in this analysis had four or more alleles. The mean expected heterozygosity and the mean observed heterozygosity for the population varied from 0.611 to 0.784 and 0.602 to 0.783 respectively. The mean FST (0.105) demonstrated that about 89.5% of the total genetic variation was due to the genetic differentiation within each population. A phylogenetic tree based on the Nei (1978) standard genetic distance displayed a remarkable degree of consistency with their different geographical origins and their presumed migration throughout China. The correspondence analysis did not only distinguish population groups, but also confirmed the above results, classifying the important populations contributing to diversity. Additionally, some specific alleles were shown to be important in the construction of the population structure. The study analyzed the recent origins of these populations and contributed to the knowledge and genetic characterization of Chinese indigenous goat populations. In addition, the seventeen microsatellites recommended by the EU Sheep and Goat Biodiversity Project proved to be useful for the biodiversity studies in goat breeds
Rapid Assembly of Multiple-Exon cDNA Directly from Genomic DNA
Backgrouud. Polymerase chain reaction (PCR) is extensively applied in gene cloning. But due to the existence of introns, low copy number of particular genes and high complexity of the eukaryotic genome, it is usually impossible to amplify and clone a gene as a full-length sequence directly from the genome by ordinary PCR based techniques. Cloning of cDNA instead of genomic DNA involves multiple steps: harvest of tissues that express the gene of interest, RNA isolation, cDNA synthesis (reverse transcription), and PCR amplification. To simplify the cloning procedures and avoid the problems caused by ubiquitously distributed durable RNases, we have developed a novel strategy allowing the cloning of any cDNA or open reading frame (ORF) with wild type sequence in any spliced form from a single genomic DNA preparation. Methodology. Our Genomic DNA Splicing technique contains the following steps: first, all exons of the gene are amplified from a genomic DNA preparation, using software-optimized, highly efficient primers residing in flanking introns. Next, the tissue-specific exon sequences are assembled into one full-length sequence by overlapping PCR with deliberately designed primers located at the splicing sites. Finally, software-optimized outmost primers are exploited for efficient amplification of the assembled full-length products. Conclusions. The Genomic DNA Splicing protocol avoids RNA preparation and reverse transcription steps, and the entire assembly process can be finished within hours, Since genamic DNA is more stable than RNA, it may be a more practical cloning strategy for many genes, especially the ones that are very large and difficult to generate a full length cDNA using oligo-dT primed reverse transcription. With this technique, we successfully doned the full-length wild type coding sequence of human polymeric immunoglobulin receptor, which is 2295 bp in length and composed of 10 exons. © 2007 An et al.published_or_final_versio
Topological insights in polynuclear Ni/Na coordination clusters derived from a schiff base ligand
This article presents the syntheses, crystal structures, topological features and magnetic properties of two NiII/NaI coordination clusters (CCs) formulated [NiII3Na(L1)3(HL1 (MeOH)2] (1) and [NiII6Na(L1)5(CO3)(MeO (MeOH)3(H2O)3]·4(MeOH) 2(H2O) [2 4(MeOH) 2(H2O)] where H2L1 is the semi rigid Schiff base ligand (E)-2-(2-hydroxy-3 methoxybenzylideneamino)-phenol). Compound 1 possesses a rare NiII3NaI cubane (3M4-1) topology and compound 2 is the first example in polynuclear Ni/Na chemistry that exhibits a 2,3,4M7-1 topology
Ni-based bimetallic heterogeneous catalysts for energy and environmental applications
Bimetallic catalysts have attracted extensive attention for a wide range of applications in energy production and environmental remediation due to their tunable chemical/physical properties. These properties are mainly governed by a number of parameters such as compositions of the bimetallic systems, their preparation method, and their morphostructure. In this regard, numerous efforts have been made to develop “designer” bimetallic catalysts with specific nanostructures and surface properties as a result of recent advances in the area of materials chemistry. The present review highlights a detailed overview of the development of nickel-based bimetallic catalysts for energy and environmental applications. Starting from a materials science perspective in order to obtain controlled morphologies and surface properties, with a focus on the fundamental understanding of these bimetallic systems to make a correlation with their catalytic behaviors, a detailed account is provided on the utilization of these systems in the catalytic reactions related to energy production and environmental remediation. We include the entire library of nickel-based bimetallic catalysts for both chemical and electrochemical processes such as catalytic reforming, dehydrogenation, hydrogenation, electrocatalysis and many other reactions
Large-scale unit commitment under uncertainty: an updated literature survey
The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject
Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.
BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
- …