3,953 research outputs found
Gradient Hard Thresholding Pursuit for Sparsity-Constrained Optimization
Hard Thresholding Pursuit (HTP) is an iterative greedy selection procedure
for finding sparse solutions of underdetermined linear systems. This method has
been shown to have strong theoretical guarantee and impressive numerical
performance. In this paper, we generalize HTP from compressive sensing to a
generic problem setup of sparsity-constrained convex optimization. The proposed
algorithm iterates between a standard gradient descent step and a hard
thresholding step with or without debiasing. We prove that our method enjoys
the strong guarantees analogous to HTP in terms of rate of convergence and
parameter estimation accuracy. Numerical evidences show that our method is
superior to the state-of-the-art greedy selection methods in sparse logistic
regression and sparse precision matrix estimation tasks
Predicting the Quality of Short Narratives from Social Media
An important and difficult challenge in building computational models for
narratives is the automatic evaluation of narrative quality. Quality evaluation
connects narrative understanding and generation as generation systems need to
evaluate their own products. To circumvent difficulties in acquiring
annotations, we employ upvotes in social media as an approximate measure for
story quality. We collected 54,484 answers from a crowd-powered
question-and-answer website, Quora, and then used active learning to build a
classifier that labeled 28,320 answers as stories. To predict the number of
upvotes without the use of social network features, we create neural networks
that model textual regions and the interdependence among regions, which serve
as strong benchmarks for future research. To our best knowledge, this is the
first large-scale study for automatic evaluation of narrative quality.Comment: 7 pages, 2 figures. Accepted at the 2017 IJCAI conferenc
Sparse Recovery with Very Sparse Compressed Counting
Compressed sensing (sparse signal recovery) often encounters nonnegative data
(e.g., images). Recently we developed the methodology of using (dense)
Compressed Counting for recovering nonnegative K-sparse signals. In this paper,
we adopt very sparse Compressed Counting for nonnegative signal recovery. Our
design matrix is sampled from a maximally-skewed p-stable distribution (0<p<1),
and we sparsify the design matrix so that on average (1-g)-fraction of the
entries become zero. The idea is related to very sparse stable random
projections (Li et al 2006 and Li 2007), the prior work for estimating summary
statistics of the data.
In our theoretical analysis, we show that, when p->0, it suffices to use M=
K/(1-exp(-gK) log N measurements, so that all coordinates can be recovered in
one scan of the coordinates. If g = 1 (i.e., dense design), then M = K log N.
If g= 1/K or 2/K (i.e., very sparse design), then M = 1.58K log N or M = 1.16K
log N. This means the design matrix can be indeed very sparse at only a minor
inflation of the sample complexity.
Interestingly, as p->1, the required number of measurements is essentially M
= 2.7K log N, provided g= 1/K. It turns out that this result is a general
worst-case bound
- …