291 research outputs found

    James Joyce and the Epiphanic Inscription: Towards an Art of Gesture as Rhythm

    Get PDF
    In Agency and Embodiment, Carrie Noland describes gesture as “a type of inscription, a parsing of the body into signifying and operational units”, considering it as a means to read and decode the human body. Through an analysis of James Joyce’s collection of Epiphanies, my paper will examine how gesture, as a mode of expression of the body, can be transcribed on the written page. Written and collected to record a “spiritual manifestation” shining through “in the vulgarity of speech or gesture, or in a memorable phase of the mind itself”, Joyce’s Epiphanies can be considered as the first step in his sustained attempt to develop an art of gesture-as-rhythm. These short pieces appear as the site in which the author seeks, through the medium of writing, to negotiate and redefine the boundaries of the physical human body. Moving towards a mapping of body and mind through the concept of rhythm, and pointing to a collaboration and mutual influence between interiority and exteriority, the Epiphanies open up a space for the reformulation of the relationship between the human body and its environment. Unpacking the ideas that sit at the heart of the concept of epiphany, the paper will shed light on how this particular mode of writing produces a rhythmic art of gesture, fixing and simultaneously liberating human and nonhuman bodies on the written pag

    "Hot" Surface Activation of Molecular Complexes: Insight from Modeling Studies

    Get PDF
    Rock-and-roll over hot floors: Theoretical modeling of the first activation stages of a Cu complex on top of a heated surface (750 K) revealed two mobility regimes, a slow bump-and-rock diffusion over the surface and a fast roll-and-go motion accompanied by significant temperature-induced bond oscillations. This study enables a deeper insight into "hot" surface molecular activation processes.Tanz auf dem Vulkan: Das Modellieren der ersten Aktivierungsstufen eines Cu-Komplexes auf einer beheizten Oberfl\ue4che (750\u2005K) enth\ufcllte zwei Bewegungsarten: eine langsame Diffusion durch \u201eAnsto fen und Taumeln\u201c und eine schnelle Rollbewegung, die mit deutlichen temperaturinduzierten Bindungsoszillationen einhergeht. Diese Befunde geben einen Einblick in die Prozesse bei der Aktivierung durch \u201ehei fe\u201c Oberfl\ue4chen

    Electron transport through single Mn12 molecular magnets

    Full text link
    We report transport measurements through a single-molecule magnet, the Mn12 derivative [Mn12O12(O2C-C6H4-SAc)16(H2O)4], in a single-molecule transistor geometry. Thiol groups connect the molecule to gold electrodes that are fabricated by electromigration. Striking observations are regions of complete current suppression and excitations of negative differential conductance on the energy scale of the anisotropy barrier of the molecule. Transport calculations, taking into account the high-spin ground state and magnetic excitations of the molecule, reveal a blocking mechanism of the current involving non-degenerate spin multiplets.Comment: Accepted for Phys. Rev. Lett., 5 pages, 4 figure

    Cobalt oxide nanomaterials prepared by CVD as negative electrodes in lithium batteries

    Get PDF
    III Encuentro sobre Nanociencia y NanotecnologĂ­a de Investigadores y TecnĂłlogos Andaluce

    The ASCE EUV Polarimeter

    Get PDF
    Abstract. The SOHO mission has achieved important results in the physics of solar wind and coronal mass ejection acceleration, but most of the processes that drive this acceleration have not yet been explained. The Advanced Spectroscopic and Coronagraphic Explorer (ASCE) mission will carry on-board spectroscopic and polarimetric instrumentation of new generation that is designed to address the fundamental questions on this processes. Following a brief description of ASCE scientific objectives and instrumentation, the EUV polarimetric channel is described. The EUV Polarimeter (EUVP) is designed to measure for the first time the magnetic field vector in the extended corona through the Hanle effect, and the anisotropy of the ion velocity. The EUVP represents the contribution of the Italian solar physics community to the ASCE mission

    Biocontrol traits of Bacillus licheniformis GL174, a culturable endophyte of Vitis vinifera cv. Glera

    Get PDF
    Background Bacillus licheniformis GL174 is a culturable endophytic strain isolated from Vitis vinifera cultivar Glera, the grapevine mainly cultivated for the Prosecco wine production. This strain was previously demonstrated to possess some specific plant growth promoting traits but its endophytic attitude and its role in biocontrol was only partially explored. In this study, the potential biocontrol action of the strain was investigated in vitro and in vivo and, by genome sequence analyses, putative functions involved in biocontrol and plant-bacteria interaction were assessed. Results Firstly, to confirm the endophytic behavior of the strain, its ability to colonize grapevine tissues was demonstrated and its biocontrol properties were analyzed. Antagonism test results showed that the strain could reduce and inhibit the mycelium growth of diverse plant pathogens in vitro and in vivo. The strain was demonstrated to produce different molecules of the lipopeptide class; moreover, its genome was sequenced, and analysis of the sequences revealed the presence of many protein-coding genes involved in the biocontrol process, such as transporters, plant-cell lytic enzymes, siderophores and other secondary metabolites. Conclusions This step-by-step analysis shows that Bacillus licheniformis GL174 may be a good biocontrol agent candidate, and describes some distinguished traits and possible key elements involved in this process. The use of this strain could potentially help grapevine plants to cope with pathogen attacks and reduce the amount of chemicals used in the vineyard

    First light observations of the solar wind in the outer corona with the Metis coronagraph

    Get PDF
    In this work, we present an investigation of the wind in the solar corona that has been initiated by observations of the resonantly scattered ultraviolet emission of the coronal plasma obtained with UVCS-SOHO, designed to measure the wind outflow speed by applying Doppler dimming diagnostics. Metis on Solar Orbiter complements the UVCS spectroscopic observations that were performed during solar activity cycle 23 by simultaneously imaging the polarized visible light and the H?» I Lyman-α corona in order to obtain high spatial and temporal resolution maps of the outward velocity of the continuously expanding solar atmosphere. The Metis observations, taken on May 15, 2020, provide the first HI Lyman-α images of the extended corona and the first instantaneous map of the speed of the coronal plasma outflows during the minimum of solar activity and allow us to identify the layer where the slow wind flow is observed. The polarized visible light (580-640 nm) and the ultraviolet HI Lyα (121.6 nm) coronal emissions, obtained with the two Metis channels, were combined in order to measure the dimming of the UV emission relative to a static corona. This effect is caused by the outward motion of the coronal plasma along the direction of incidence of the chromospheric photons on the coronal neutral hydrogen. The plasma outflow velocity was then derived as a function of the measured Doppler dimming. The static corona UV emission was simulated on the basis of the plasma electron density inferred from the polarized visible light. This study leads to the identification, in the velocity maps of the solar corona, of the high-density layer about ±10° wide, centered on the extension of a quiet equatorial streamer present at the east limb - the coronal origin of the heliospheric current sheet - where the slowest wind flows at about 160 ± 18 km s-1 from 4 R⊙ to 6 R⊙. Beyond the boundaries of the high-density layer, the wind velocity rapidly increases, marking the transition between slow and fast wind in the corona

    Defining Haptic Experience: Foundations for Understanding, Communicating, and Evaluating HX

    Get PDF
    Haptic technology is maturing, with expectations and evidence that it will contribute to user experience (UX). However, we have very little understanding about how haptic technology can influence people’s experience. Researchers and designers need a way to understand, communicate, and evaluate haptic technology’s effect on UX. From a literature review and two studies – one with haptics novices, the other with expert hapticians – we developed a theoretical model of the factors that constitute a good haptic experience (HX). We define HX and propose its constituent factors: design parameters of Timeliness, Density, Intensity, and Timbre; the cross-cutting concern of Personalization; usability requirements of Utility, Causality, Consistency, and Saliency; and experiential factors of Harmony, Expressivity, Autotelics, Immersion, and Realism as guiding constructs important for haptic experience. This model will help guide design and research of haptic systems, inform language around haptics, and provide the basis for evaluative instruments, such as checklists, heuristics, or questionnaires.We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), [funding reference number 2019-06589
    • …
    corecore