43 research outputs found

    Constraints on models of the Higgs boson with exotic spin and parity using decays to bottom-antibottom quarks in the full CDF data set

    Get PDF
    A search for particles with the same mass and couplings as those of the standard model Higgs boson but different spin and parity quantum numbers is presented. We test two specific alternative Higgs boson hypotheses: a pseudoscalar Higgs boson with spin-parity JP=0- and a gravitonlike Higgs boson with JP=2+, assuming for both a mass of 125GeV/c2. We search for these exotic states produced in association with a vector boson and decaying into a bottom-antibottom quark pair. The vector boson is reconstructed through its decay into an electron or muon pair, or an electron or muon and a neutrino, or it is inferred from an imbalance in total transverse momentum. We use expected kinematic differences between events containing exotic Higgs bosons and those containing standard model Higgs bosons. The data were collected by the CDF experiment at the Tevatron proton-antiproton collider, operating at a center-of-mass energy of s=1.96TeV, and correspond to an integrated luminosity of 9.45fb-1. We exclude deviations from the predictions of the standard model with a Higgs boson of mass 125GeV/c2 at the level of 5 standard deviations, assuming signal strengths for exotic boson production equal to the prediction for the standard model Higgs boson, and set upper limits of approximately 30% relative to the standard model rate on the possible rate of production of each exotic state

    Tripping on Acid: Trans-Kingdom Perspectives on Biological Acids in Immunity and Pathogenesis

    Get PDF

    All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data

    Get PDF
    We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000 Hz and with a frequency time derivative in the range of [-1.0,+0.1]×10-8 Hz/s. Such a signal could be produced by a nearby, spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the LIGO data from the first six months of Advanced LIGO's and Advanced Virgo's third observational run, O3. No periodic gravitational wave signals are observed, and 95% confidence-level (C.L.) frequentist upper limits are placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are ∼1.7×10-25 near 200 Hz. For a circularly polarized source (most favorable orientation), the lowest upper limits are ∼6.3×10-26. These strict frequentist upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest 95% C.L. upper limits on the strain amplitude are ∼1.4×10-25. These upper limits improve upon our previously published all-sky results, with the greatest improvement (factor of ∼2) seen at higher frequencies, in part because quantum squeezing has dramatically improved the detector noise level relative to the second observational run, O2. These limits are the most constraining to date over most of the parameter space searched

    All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO’s and Advanced Virgo’s first three observing runs

    Get PDF
    We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing runs of the LIGO-Virgo detectors. However, a broadband analysis is likely to miss narrowband signals as the signal-to-noise ratio of a narrowband signal can be significantly reduced when combined with detector output from other frequencies. Data folding and the computationally efficient analysis pipeline, {\tt PyStoch}, enable us to perform the radiometer map-making at every frequency bin. We perform the search at 3072 {\tt{HEALPix}} equal area pixels uniformly tiling the sky and in every frequency bin of width 1/321/32~Hz in the range 20172620-1726~Hz, except for bins that are likely to contain instrumental artefacts and hence are notched. We do not find any statistically significant evidence for the existence of narrowband gravitational-wave signals in the analyzed frequency bins. Therefore, we place 95%95\% confidence upper limits on the gravitational-wave strain for each pixel-frequency pair, the limits are in the range (0.0309.6)×1024(0.030 - 9.6) \times10^{-24}. In addition, we outline a method to identify candidate pixel-frequency pairs that could be followed up by a more sensitive (and potentially computationally expensive) search, e.g., a matched-filtering-based analysis, to look for fainter nearly monochromatic coherent signals. The ASAF analysis is inherently independent of models describing any spectral or spatial distribution of power. We demonstrate that the ASAF results can be appropriately combined over frequencies and sky directions to successfully recover the broadband directional and isotropic results

    Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO–Virgo run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate

    Search for B meson decays to eta(')eta K-'

    Get PDF
    Contains fulltext : 128253.pdf (publisher's version ) (Open Access

    Measurement of the tbartt bar{t} Production Cross Section in pbarpp bar{p} collisions at sqrtssqrt{s} = 1.96-TeV in the All Hadronic Decay Mode

    No full text

    Search for H to b anti-b produced in association with W bosons in pbarppbar{p} collisions at sqrts=sqrt{s} = 1.96-TeV

    No full text

    Measurement of the dipion mass spectrum in X(3872)toJ/psipi+piX(3872) to J/psi pi^+ pi^- decays

    No full text
    corecore