17 research outputs found

    Improvement of acquisition and analysis methods in multi-electrode array experiments with iPS cell-derived cardiomyocytes

    Get PDF
    AbstractIntroductionMulti-electrode array (MEA) systems and human induced pluripotent stem (iPS) cell-derived cardiomyocytes are frequently used to characterize the electrophysiological effects of drug candidates for the prediction of QT prolongation and proarrhythmic potential. However, the optimal experimental conditions for obtaining reliable experimental data, such as high-pass filter (HPF) frequency and cell plating density, remain to be determined.MethodsExtracellular field potentials (FPs) were recorded from iPS cell-derived cardiomyocyte sheets by using the MED64 and MEA2100 multi-electrode array systems. Effects of HPF frequency (0.1 or 1Hz) on FP duration (FPD) were assessed in the presence and absence of moxifloxacin, terfenadine, and aspirin. The influence of cell density on FP characteristics recorded through a 0.1-Hz HPF was examined. The relationship between FP and action potential (AP) was elucidated by simultaneous recording of FP and AP using a membrane potential dye.ResultsMany of the FP waveforms recorded through a 1-Hz HPF were markedly deformed and appeared differentiated compared with those recorded through a 0.1-Hz HPF. The concentrationā€“response curves for FPD in the presence of terfenadine reached a steady state at concentrations of 0.1 and 0.3Ī¼M when a 0.1-Hz HPF was used. In contrast, FPD decreased at a concentration of 0.3Ī¼M with a characteristic bell-shaped concentrationā€“response curve when a 1-Hz HPF was used. The amplitude of the first and second peaks in the FP waveform increased with increasing cell plating density. The second peak of the FP waveform roughly coincided with AP signal at 50% repolarization, and the negative deflection at the second peak of the FP waveform in the presence of E-4031 corresponded to early afterdepolarization and triggered activity.DiscussionFP can be used to assess the QT prolongation and proarrhythmic potential of drug candidates; however, experimental conditions such as HPF frequency are important for obtaining reliable data

    PolyADP-Ribosylation Is Required for Pronuclear Fusion during Postfertilization in Mice

    Get PDF
    BACKGROUND: During fertilization, pronuclear envelope breakdown (PNEB) is followed by the mingling of male and female genomes. Dynamic chromatin and protein rearrangements require posttranslational modification (PTM) for the postfertilization development. METHODOLOGY/PRINCIPAL FINDINGS: Inhibition of poly(ADP-ribose) polymerase activity (PARylation) by either PJ-34 or 5-AIQ resulted in developmental arrest of fertilized embryos at the PNEB. PARylation inhibition affects spindle bundle formation and phosphorylation of Erk molecules of metaphase II (MII) unfertilized oocytes. We found a frequent appearance of multiple pronuclei (PN) in the PARylation-inhibited embryos, suggesting defective polymerization of tubulins. Attenuated phosphorylation of lamin A/C by PARylation was detected in the PARylation-inhibited embryos at PNEB. This was associated with sustained localization of heterodomain protein 1 (HP1) at the PN of the one-cell embryos arrested by PARylation inhibition. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that PARylation is required for pronuclear fusion during postfertilization processes. These data further suggest that PARylation regulates protein dynamics essential for the beginning of mouse zygotic development. PARylation and its involving signal-pathways may represent potential targets as contraceptives

    Development of torsadogenic risk assessment using human induced pluripotent stem cell-derived cardiomyocytes: Japan iPS Cardiac Safety Assessment (JiCSA) update

    No full text
    Cardiac safety assessment is challenging because a better understanding of torsadogenic mechanisms beyond hERG blockade and QT interval prolongation is necessary for patient safety. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide a new human cell-based platform to assess cardiac safety in non-clinical testing during drug development. The multi-electrode array (MEA) platform is a promising electrophysiological technology to assess QT interval prolongation and proarrhythmic potential of drug candidates using hiPSC-CMs. The Japan iPS Cardiac Safety Assessment (JiCSA) has established an MEA protocol to evaluate the applicability of hiPSC-CMs for assessing the torsadogenic potential of compounds and completed a large-scale validation study using 60 compounds. During our study, an international multi-site study of hiPSC-CMs was performed by the Comprehensive inĀ Vitro Proarrhythmia Assay (CiPA) initiative using 28 compounds. We have comparatively analyzed our JiCSA datasets with those of CiPA using the CiPA logistical and ordinal linear regression model. Regardless of the protocol differences, the evaluation results of the 28 compounds were very similar and highly predictable for torsadogenic risks. Thus, an MEA-based approach using hiPSC-CMs would be a standard testing method to evaluate proarrhythmic potentials. This review paper would provide new insights into the hiPSC-CMs/MEA method required for its regulatory use. Keywords: Cardiac safety, CiPA, Human iPS cells, JiCSA, Standardizatio

    Repolarization Studies using Human Stem Cell-Derived Cardiomyocytes: Validation Studies and Best Practice Recommendations

    No full text
    Human stem-cell derived cardiomyocytes (hSC-CMs) hold great promise as in vitro models to study the electrophysiological effects of novel drug candidates on human ventricular repolarization. Two recent large validation studies have demonstrated the ability of hSC-CMs to detect drug-induced delayed repolarization and ā€œcellrhythmiasā€ (interrupted repolarization or irregular spontaneous beating of myocytes) linked to Torsade-de-Pointes proarrhythmic risk. These (and other) studies have also revealed variability of electrophysiological responses attributable to differences in experimental approaches, protocols, technology platforms used, and pharmacologic sensitivity of different human-derived models. Thus, when evaluating drug-induced repolarization effects there is a need to consider 1) the advantages and disadvantages of different approaches, 2) the need for robust functional characterization of hSC-CMs preparations to define ā€œfit for purposeā€ applications, and 3) adopting standardized best practices to guide future studies with evolving hSC-CM preparations. Examples provided and suggested best practices are instructional in defining consistent, reproducible, and interpretable ā€œfit for purposeā€ hSC-CM based applications. Implementation of best practices should enhance the clinical translation of hSC-CM-based cell and tissue preparations in drug safety evaluations and support their growing role in regulatory filings

    International Multisite Study of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Drug Proarrhythmic Potential Assessment

    Get PDF
    Summary: To assess the utility of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as an inĀ vitro proarrhythmia model, we evaluated the concentration dependence and sources of variability of electrophysiologic responses to 28 drugs linked to low, intermediate, and high torsades de pointes (TdP) risk categories using two commercial cell lines and standardized protocols in a blinded multisite study using multielectrode array or voltage-sensing optical approaches. Logistical and ordinal linear regression models were constructed using drug responses as predictors and TdP risk categories as outcomes. Three of seven predictors (drug-induced arrhythmia-like events and prolongation of repolarization at either maximum tested or maximal clinical exposures) categorized drugs with reasonable accuracy (area under the curve values of receiver operator curves āˆ¼0.8). hiPSC-CM line, test site, and platform had minimal influence on drug categorization. TheseĀ results demonstrate the utility of hiPSC-CMs to detect drug-induced proarrhythmic effects as part of the evolving Comprehensive InĀ Vitro Proarrhythmia Assay paradigm. : Blinova etĀ al. tested human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for improving torsades de pointes arrhythmia risk prediction of drugs in the Comprehensive InĀ Vitro Proarrhythmia Assay (CiPA) initiative. This validation study confirms their utility based on electrophysiologic responses to 28 blinded drugs, with minimal influence from cell lines, test sites, and electrophysiological platforms. Keywords: comprehensive inĀ vitro proarrhythmia assay, CiPA, human-induced pluripotent stem cell-derived cardiomycotes, hiPSC-CM, drug-induced ventricular arrhythmia Torsade de Pointes, microelectrode array, voltage-sensitive dye

    Electrophysiological Characteristics of Human iPSC-Derived Cardiomyocytes for the Assessment of Drug-Induced Proarrhythmic Potential

    No full text
    <div><p>The aims of this study were to (1) characterize basic electrophysiological elements of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) that correspond to clinical properties such as QT-RR relationship, (2) determine the applicability of QT correction and analysis methods, and (3) determine if and how these in-vitro parameters could be used in risk assessment for adverse drug-induced effects such as Torsades de pointes (TdP). Field potential recordings were obtained from commercially available hiPSC-CMs using multi-electrode array (MEA) platform with and without ion channel antagonists in the recording solution. Under control conditions, MEA-measured interspike interval and field potential duration (FPD) ranged widely from 1049 to 1635 ms and from 334 to 527 ms, respectively and provided positive linear regression coefficients similar to native QT-RR plots obtained from human electrocardiogram (ECG) analyses in the ongoing cardiovascular-based Framingham Heart Study. Similar to minimizing the effect of heart rate on the QT interval, Fridericiaā€™s and Bazettā€™s corrections reduced the influence of beat rate on hiPSC-CM FPD. In the presence of E-4031 and cisapride, inhibitors of the rapid delayed rectifier potassium current, hiPSC-CMs showed reverse use-dependent FPD prolongation. Categorical analysis, which is usually applied to clinical QT studies, was applicable to hiPSC-CMs for evaluating torsadogenic risks with FPD and/or corrected FPD. Together, this results of this study links hiPSC-CM electrophysiological endpoints to native ECG endpoints, demonstrates the appropriateness of clinical analytical practices as applied to hiPSC-CMs, and suggests that hiPSC-CMs are a reliable models for assessing the arrhythmogenic potential of drug candidates in human.</p></div
    corecore