8 research outputs found

    Strong pathogen competition in neonatal gut colonisation

    Get PDF
    Opportunistic bacterial pathogen species and their strains that colonise the human gut are generally understood to compete against both each other and the commensal species colonising this ecosystem. Currently we are lacking a population-wide quantification of strain-level colonisation dynamics and the relationship of colonisation potential to prevalence in disease, and how ecological factors might be modulating these. Here, using a combination of latest high-resolution metagenomics and strain-level genomic epidemiology methods we performed a characterisation of the competition and colonisation dynamics for a longitudinal cohort of neonatal gut microbiomes. We found strong inter- and intra-species competition dynamics in the gut colonisation process, but also a number of synergistic relationships among several species belonging to genus Klebsiella, which includes the prominent human pathogen Klebsiella pneumoniae. No evidence of preferential colonisation by hospital-adapted pathogen lineages in either vaginal or caesarean section birth groups was detected. Our analysis further enabled unbiased assessment of strain-level colonisation potential of extra-intestinal pathogenic Escherichia coli (ExPEC) in comparison with their propensity to cause bloodstream infections. Our study highlights the importance of systematic surveillance of bacterial gut pathogens, not only from disease but also from carriage state, to better inform therapies and preventive medicine in the future.Peer reviewe

    Water Conscious Mining (WASCIOUS)

    No full text
    The main objective of the NordMin WASCIOUS project was to develop a technology concept for water conscious mining, where innovative water and tailings treatment technologies provide good-quality water for recycling and discharge and enable safe disposal or utilization of tailings. The work included a survey on current practices and requirements in Nordic mines and laboratory and pilot scale development of several technologies. Computational simulations of water treatment and recycling practices were performed for a feasibility study of some technology alternatives and technologies for dewatering of tailings were evaluated. As an important outcome of the project, a future Nordic research platform was established related to environmental issues in mining for the Nordic region, enabling exchange of ideas and collaboration in future project calls, and facilitating ideas for future projects
    corecore