38 research outputs found

    Genetic population structure of Hemigrammocypris rasborella (Cyprinidae) inferred from mtDNA sequences

    Get PDF
    The genetic population structure of the small cyprinid Hemigrammocypris rasborella, distributed widely in lowlands of western Japan, was examined using partial sequence data of mitochondrial DNA (mtDNA). Molecular phylogenetic analysis revealed that the populations of the western Kyushu region were markedly differentiated from all eastern populations, such that the groups would be comparable to different species; their divergence was inferred to have occurred in the Late Miocene–Pliocene. Also, a largely divergent mtDNA group (with divergence in the early Pleistocene) was found in the Sanyo and northeastern Shikoku regions, forming a secondary contact zone in the western Kinki with the eastern mtDNA group. To date, these aspects of the population structure of H. rasborella appear to be unique among lowland fishes in western Japan. Deeper understanding of the formation processes of freshwater faunas in western Japan will require further comparisons of the phylogeographic patterns and ecological traits of constituent species

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Haploinsufficiency of interferon regulatory factor 4 strongly protects against autoimmune diabetes in NOD mice

    Get PDF
    Aims/hypothesis: Interferon regulatory factor (IRF)4 plays a critical role in lymphoid development and the regulation of immune responses. Genetic deletion of IRF4 has been shown to suppress autoimmune disease in several mouse models, but its role in autoimmune diabetes in NOD mice remains unknown. Methods: To address the role of IRF4 in the pathogenesis of autoimmune diabetes in NOD mice, we generated IRF4-knockout NOD mice and investigated the impact of the genetic deletion of IRF4 on diabetes, insulitis and insulin autoantibody; the effector function of T cells in vivo and in vitro; and the proportion of dendritic cell subsets. Results: Heterozygous IRF4-deficient NOD mice maintained the number and phenotype of T cells at levels similar to NOD mice. However, diabetes and autoantibody production were completely suppressed in both heterozygous and homozygous IRF4-deficient NOD mice. The level of insulitis was strongly suppressed in both heterozygous and homozygous IRF4-deficient mice, with minimal insulitis observed in heterozygous mice. An adoptive transfer study revealed that IRF4 deficiency conferred disease resistance in a gene-dose-dependent manner in recipient NOD/severe combined immunodeficiency mice. Furthermore, the proportion of migratory dendritic cells in lymph nodes was reduced in heterozygous and homozygous IRF4-deficient NOD mice in an IRF4 dose-dependent manner. These results suggest that the levels of IRF4 in T cells and dendritic cells are important for the pathogenesis of diabetes in NOD mice. Conclusions/interpretation: Haploinsufficiency of IRF4 halted disease development in NOD mice. Our findings suggest that an IRF4-targeted strategy might be useful for modulating autoimmunity in type 1 diabetes
    corecore