34 research outputs found

    Positive cosmological constant in loop quantum cosmology

    Full text link
    The k=0 Friedmann Lemaitre Robertson Walker model with a positive cosmological constant and a massless scalar field is analyzed in detail. If one uses the scalar field as relational time, new features arise already in the Hamiltonian framework of classical general relativity: In a finite interval of relational time, the universe expands out to infinite proper time and zero matter density. In the deparameterized quantum theory, the true Hamiltonian now fails to be essentially self-adjoint both in the Wheeler DeWitt (WDW) approach and in LQC. Irrespective of the choice of the self-adjoint extension, the big bang singularity persists in the WDW theory while it is resolved and replaced by a big bounce in loop quantum cosmology (LQC). Furthermore, the quantum evolution is surprisingly insensitive to the choice of the self-adjoint extension. This may be a special case of an yet to be discovered general property of a certain class of symmetric operators that fail to be essentially self-adjoint.Comment: 36 pages, 6 figures, RevTex

    Prescriptions in Loop Quantum Cosmology: A comparative analysis

    Get PDF
    Various prescriptions proposed in the literature to attain the polymeric quantization of a homogeneous and isotropic flat spacetime coupled to a massless scalar field are carefully analyzed in order to discuss their differences. A detailed numerical analysis confirms that, for states which are not deep in the quantum realm, the expectation values and dispersions of some natural observables of interest in cosmology are qualitatively the same for all the considered prescriptions. On the contrary, the amplitude of the wave functions of those states differs considerably at the bounce epoch for these prescriptions. This difference cannot be absorbed by a change of representation. Finally, the prescriptions with simpler superselection sectors are clearly more efficient from the numerical point of view.Comment: 18 pages, 6 figures, RevTex4-1 + BibTe

    Big Bounce and inhomogeneities

    Full text link
    The dynamics of an inhomogeneous universe is studied with the methods of Loop Quantum Cosmology as an example of the quantization of vacuum cosmological spacetimes containing gravitational waves (Gowdy spacetimes). The analysis performed at the effective level shows that: (i) The initial Big Bang singularity is replaced (as in the case of homogeneous cosmological models) by a Big Bounce, joining deterministically two large universes, (ii) the universe size at the bounce is at least of the same order of magnitude as that of the background homogeneous universe, (iii) for each gravitational wave mode, the difference in amplitude at very early and very late times has a vanishing statistical average when the bounce dynamics is strongly dominated by the inhomogeneities, whereas this average is positive when the dynamics is in a near-vacuum regime, so that statistically the inhomogeneities are amplified.Comment: RevTex4, 4 pages, 2 figure

    Cosmic recall and the scattering picture of Loop Quantum Cosmology

    Get PDF
    The global dynamics of a homogeneous universe in Loop Quantum Cosmology is viewed as a scattering process of its geometrodynamical equivalent. This picture is applied to build a flexible (easy to generalize) and not restricted just to exactly solvable models method of verifying the preservation of the semiclassicality through the bounce. The devised method is next applied to two simple examples: (i) the isotropic Friedman Robertson Walker universe, and (ii) the isotropic sector of the Bianchi I model. For both of them we show, that the dispersions in the logarithm of the volume ln(v) and scalar field momentum ln(p_phi) in the distant future and past are related via strong triangle inequalities. This implies in particular a strict preservation of the semiclassicality (in considered degrees of freedom) in both the cases (i) and (ii). Derived inequalities are general: valid for all the physical states within the considered models.Comment: RevTex4, 19 pages, 3 figure

    Dust reference frame in quantum cosmology

    Full text link
    We give a formulation of quantum cosmology with a pressureless dust and arbitrary additional matter fields. The system has the property that its Hamiltonian constraint is linear in the dust momentum. This feature provides a natural time gauge, leading to a physical hamiltonian that is not a square root. Quantization leads to Schr{\"o}dinger equation for which unitary evolution is directly linked to geodesic completeness. Our approach simplifies the analysis of both Wheeler-deWitt and loop quantum cosmology (LQC) models, and significantly broadens the applicability of the latter. This is demonstrated for arbitrary scalar field potential and cosmological constant in LQC.Comment: 8 pages, iopart style + BibTe

    Quantum constraints, Dirac observables and evolution: group averaging versus Schroedinger picture in LQC

    Full text link
    A general quantum constraint of the form C=T2BIHC= - \partial_T^2 \otimes B - I\otimes H (realized in particular in Loop Quantum Cosmology models) is studied. Group Averaging is applied to define the Hilbert space of solutions and the relational Dirac observables. Two cases are considered. In the first case, the spectrum of the operator (1/2)π2BH(1/2)\pi^2 B - H is assumed to be discrete. The quantum theory defined by the constraint takes the form of a Schroedinger-like quantum mechanics with a generalized Hamiltonian B1H\sqrt{B^{-1} H}. In the second case, the spectrum is absolutely continuous and some peculiar asymptotic properties of the eigenfunctions are assumed. The resulting Hilbert space and the dynamics are characterized by a continuous family of the Schroedinger-like quantum theories. However, the relational observables mix different members of the family. Our assumptions are motivated by new Loop Quantum Cosmology models of quantum FRW spacetime. The two cases considered in the paper correspond to the negative and, respectively, positive cosmological constant. Our results should be also applicable in many other general relativistic contexts.Comment: RevTex4, 32 page

    Mechanics of multidimensional isolated horizons

    Full text link
    Recently a multidimensional generalization of Isolated Horizon framework has been proposed by Lewandowski and Pawlowski (gr-qc/0410146). Therein the geometric description was easily generalized to higher dimensions and the structure of the constraints induced by the Einstein equations was analyzed. In particular, the geometric version of the zeroth law of the black hole thermodynamics was proved. In this work we show how the IH mechanics can be formulated in a dimension--independent fashion and derive the first law of BH thermodynamics for arbitrary dimensional IH. We also propose a definition of energy for non--rotating horizons.Comment: 25 pages, 4 figures (eps), last sections revised, acknowledgements and a section about the gauge invariance of introduced quantities added; typos corrected, footnote 4 on page 9 adde

    Inflation from non-minimally coupled scalar field in loop quantum cosmology

    Full text link
    The FRW model with non-minimally coupled massive scalar field has been investigated in LQC framework. Considered form of the potential and coupling allows applications to Higgs driven inflation. Out of two frames used in the literature to describe such systems: Jordan and Einstein frame, the latter one is applied. Specifically, we explore the idea of the Einstein frame being the natural 'environment' for quantization and the Jordan picture having an emergent nature. The resulting dynamics qualitatively modifies the standard bounce paradigm in LQC in two ways: (i) the bounce point is no longer marked by critical matter energy density, (ii) the Planck scale physics features the 'mexican hat' trajectory with two consecutive bounces and rapid expansion and recollapse between them. Furthermore, for physically viable coupling strength and initial data the subsequent inflation exceeds 60 e-foldings.Comment: Clarity improved. Replaced with revised version accepted in JCA
    corecore