3,642 research outputs found

    Auto-Encoding Sequential Monte Carlo

    Full text link
    We build on auto-encoding sequential Monte Carlo (AESMC): a method for model and proposal learning based on maximizing the lower bound to the log marginal likelihood in a broad family of structured probabilistic models. Our approach relies on the efficiency of sequential Monte Carlo (SMC) for performing inference in structured probabilistic models and the flexibility of deep neural networks to model complex conditional probability distributions. We develop additional theoretical insights and introduce a new training procedure which improves both model and proposal learning. We demonstrate that our approach provides a fast, easy-to-implement and scalable means for simultaneous model learning and proposal adaptation in deep generative models

    Bayesian Optimization for Probabilistic Programs

    Full text link
    We present the first general purpose framework for marginal maximum a posteriori estimation of probabilistic program variables. By using a series of code transformations, the evidence of any probabilistic program, and therefore of any graphical model, can be optimized with respect to an arbitrary subset of its sampled variables. To carry out this optimization, we develop the first Bayesian optimization package to directly exploit the source code of its target, leading to innovations in problem-independent hyperpriors, unbounded optimization, and implicit constraint satisfaction; delivering significant performance improvements over prominent existing packages. We present applications of our method to a number of tasks including engineering design and parameter optimization

    Involving your librarian in instruction : or ... how I learned to stop worrying and love my librarian

    Get PDF
    Presented at 2015 FaCET Conference at UMKC, January 15, 2015Title from PDF, viewed on March 13, 201
    • …
    corecore