5 research outputs found

    Maintaining sagittal plane balance compromises frontal plane balance during reactive stepping in people post-stroke

    Get PDF
    Background. Maintaining balance in response to perturbations during walking often requires the use of corrective responses to keep the center of mass within the base of support. The relationship between the center of mass and base of support is often quantified using the margin of stability. Although people post-stroke increase the margin of stability following perturbations, control deficits may lead to asymmetries in regulation of margins of stability, which may also cause maladaptive coupling between the sagittal and frontal planes during balance-correcting responses. Methods. We assessed how paretic and non-paretic margins of stability are controlled during recovery from forward perturbations and determined how stroke-related impairments influence the coupling between the anteroposterior and mediolateral margins of stability. Twenty-one participants with post-stroke hemiparesis walked on a treadmill while receiving slip-like perturbations on both limbs at foot-strike. We assessed anteroposterior and mediolateral margins of stability before perturbations and during perturbation recovery. Findings. Participants walked with smaller anteroposterior and larger mediolateral margins of stability on the paretic versus non-paretic sides. When responding to perturbations, participants increased the anteroposterior margin of stability bilaterally by extending the base of support and reducing the excursion of the extrapolated center of mass. The anteroposterior and mediolateral margins of stability in the paretic limb negatively covaried during reactive steps such that increases in anteroposterior were associated with reductions in mediolateral margins of stability. Interpretation. Balance training interventions to reduce fall risk post-stroke may benefit from incorporating strategies to reduce maladaptive coupling of frontal and sagittal plane stability

    Clinical indications and protocol considerations for selecting initial body weight support levels in gait rehabilitation: a systematic review

    Get PDF
    Background: Body weight support (BWS) training devices are frequently used to improve gait in individuals with neurological impairments, but guidance in selecting an appropriate level of BWS is limited. Here, we aim to describe the initial BWS levels used during gait training, the rationale for this selection and the clinical goals aligned with BWS training for different diagnoses.Method: A systematic literature search was conducted in PubMed, Embase and Web of Science, including terms related to the population (individuals with neurological disorders), intervention (BWS training) and outcome (gait). Information on patient characteristics, type of BWS device, BWS level and training goals was extracted from the included articles.Results: Thirty-three articles were included, which described outcomes using frame-based (stationary or mobile) and unidirectional ceiling-mounted devices on four diagnoses (multiple sclerosis (MS), spinal cord injury (SCI), stroke, traumatic brain injury (TBI)). The BWS levels were highest for individuals with MS (median: 75%, IQR: 6%), followed by SCI (median: 40%, IQR: 35%), stroke (median: 30%, IQR: 4.75%) and TBI (median: 15%, IQR: 0%). The included studies reported eleven different training goals. Reported BWS levels ranged between 30 and 75% for most of the training goals, without a clear relationship between BWS level, diagnosis, training goal and rationale for BWS selection. Training goals were achieved in all included studies.Conclusion: Initial BWS levels differ considerably between studies included in this review. The underlying rationale for these differences was not clearly motivated in the included studies. Variation in study designs and populations does not allow to draw a conclusion on the effectiveness of BWS levels. Hence, it remains difficult to formulate guidelines on optimal BWS settings for different diagnoses, BWS devices and training goals. Further efforts are required to establish clinical guidelines and to experimentally investigate which initial BWS levels are optimal for specific diagnoses and training goals

    Comparison of ground reaction force and marker-based methods to estimate mediolateral center of mass displacement and margins of stability during walking

    Get PDF
    Dynamic balance control during human walking can be described by the distance between the mediolateral (ML) extrapolated center of mass (XCoM) position and the base of support, the margin of stability (MoS). The ML center of mass (CoM) position during treadmill walking can be estimated based on kinematic data (marker-based method) and a combination of ground reaction forces and center of pressure positions (GRF-based method). Here, we compare a GRF-based method with a full-body marker-based method for estimating the ML CoM, ML XCoM and ML MoS. Fifteen healthy adults walked on a dual-belt treadmill at comfortable walking speed for three minutes. Kinetic and kinematic data were collected and analyzed using a GRF-based and marker-based method to compare the ML CoM, ML XCoM and ML MoS. High correlation coefficients (r > 0.98) and small differences (Root Mean Square Difference < 0.0072 m) in ML CoM and ML XCoM were found between the GRF-based and marker-based methods. The GRF-based method resulted in larger ML XCoM excursion (0.0118 ± 0.0074 m) and smaller ML MoS values (0.0062 ± 0.0028 m) than the marker-based method, but these differences were consistent across participants. In conclusion, the GRF-based method is a valid method to determine the ML CoM, XCoM and MoS. One should be aware of higher ML XCoM and smaller ML MoS values in the GRF-based method when comparing absolute values between studies. The GRF-based method strongly reduces measurement times and can be used to provide real-time CoM-CoP feedback during treadmill gait training
    corecore