48 research outputs found

    Reproductive Compatibility among Populations and Host‐Associated Lineages of the Common Bed Bug (\u3cem\u3eCimex lectularius\u3c/em\u3e L.)

    Get PDF
    As populations differentiate across geographic or host‐association barriers, interpopulation fertility is often a measure of the extent of incipient speciation. The bed bug, Cimex lectularius L., was recently found to form two host‐associated lineages within Europe: one found with humans (human‐associated, HA) and the other found with bats (bat‐associated, BA). No unequivocal evidence of contemporary gene flow between these lineages has been found; however, it is unclear whether this is due to an inability to produce viable “hybrid” offspring. To address this question and determine the extent of compatibility between host‐associated lineages, we set up mating crosses among populations of bed bugs based on both their host association (human—HA vs. bat—BA) and geographic origin (North America vs. Europe). Within‐population fecundity was significantly higher for all HA populations (\u3e 1.7 eggs/day) than for BA populations (\u3c 1 egg/day). However, all within‐population crosses, regardless of host association, had \u3e 92% egg hatch rates. Contrary to previous reports, in all interlineage crosses, successful matings occurred, fertile eggs were oviposited, and the F1 “hybrid” generation was found to be reproductively viable. In addition, we evaluated interpopulation genetic variation in Wolbachia among host‐associated lineages. We did not find any clear patterns related to host association, nor did we observe a homogenization of Wolbachia lineages across populations that might explain a breakdown of reproductive incompatibility. These results indicate that while the HA and BA populations of C. lectularius represent genetically differentiated host‐associated lineages, possibly undergoing sympatric speciation, this is in its incipient stage as they remain reproductively compatible. Other behavioral, physiological, and/or ecological factors likely maintain host‐associated differentiation

    Resistance is futile: RNA-sequencing reveals differing responses to bat fungal pathogen in Nearctic Myotis lucifugus and Palearctic Myotis myotis

    Get PDF
    Resistance and tolerance allow organisms to cope with potentially life-threatening pathogens. Recently introduced pathogens initially induce resistance responses, but natural selection favors the development of tolerance, allowing for a commensal relationship to evolve. Mycosis by Pseudogymnoascus destructans, causing white-nose syndrome (WNS) in Nearctic hibernating bats, has resulted in population declines since 2006. The pathogen, which spread from Europe, has infected species of Palearctic Myotis for a longer period. We compared ecologically relevant responses to the fungal infection in the susceptible Nearctic M. lucifugus and less susceptible Palearctic M. myotis, to uncover factors contributing to survival differences in the two species. Samples were collected from euthermic bats during arousal from hibernation, a naturally occurring phenomenon, during which transcriptional responses are activated. We compared the whole-transcriptome responses in wild bats infected with P. destructans hibernating in their natural habitat. Our results show dramatically different local transcriptional responses to the pathogen between uninfected and infected samples from the two species. Whereas we found 1526 significantly upregulated or downregulated transcripts in infected M. lucifugus, only one transcript was downregulated in M. myotis. The upregulated response pathways in M. lucifugus include immune cell activation and migration, and inflammatory pathways, indicative of an unsuccessful attempt to resist the infection. In contrast, M. myotis appears to tolerate P. destructans infection by not activating a transcriptional response. These host-microbe interactions determine pathology, contributing to WNS susceptibility, or commensalism, promoting tolerance to fungal colonization during hibernation that favors survival.Peer reviewe

    Increasing Incidence of Geomyces destructans Fungus in Bats from the Czech Republic and Slovakia

    Get PDF
    BACKGROUND: White-nose syndrome is a disease of hibernating insectivorous bats associated with the fungus Geomyces destructans. It first appeared in North America in 2006, where over a million bats died since then. In Europe, G. destructans was first identified in France in 2009. Its distribution, infection dynamics, and effects on hibernating bats in Europe are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We screened hibernacula in the Czech Republic and Slovakia for the presence of the fungus during the winter seasons of 2008/2009 and 2009/2010. In winter 2009/2010, we found infected bats in 76 out of 98 surveyed sites, in which the majority had been previously negative. A photographic record of over 6000 hibernating bats, taken since 1994, revealed bats with fungal growths since 1995; however, the incidence of such bats increased in Myotis myotis from 2% in 2007 to 14% by 2010. Microscopic, cultivation and molecular genetic evaluations confirmed the identity of the recently sampled fungus as G. destructans, and demonstrated its continuous distribution in the studied area. At the end of the hibernation season we recorded pathologic changes in the skin of the affected bats, from which the fungus was isolated. We registered no mass mortality caused by the fungus, and the recorded population decline in the last two years of the most affected species, M. myotis, is within the population trend prediction interval. CONCLUSIONS/SIGNIFICANCE: G. destructans was found to be widespread in the Czech Republic and Slovakia, with an epizootic incidence in bats during the most recent years. Further development of the situation urgently requires a detailed pan-European monitoring scheme

    2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV

    Mating and Courtship Behaviour of Two Sibling Bat Species ( Pipistrellus pipistrellus, P. pygmaeus

    No full text

    Ectoparasites may serve as vectors for the white-nose syndrome fungus

    No full text
    Background Vertebrate ectoparasites frequently play a role in transmission of infectious agents. Pseudogymnoascus destructans is a psychrophilic fungus known to cause white-nose syndrome (WNS), an emerging infectious disease of bats. It is transmitted with direct contact between bats or with contaminated environment. The aim of this study was to examine wing mites from the family Spinturnicidae parasitizing hibernating bats for the presence of P. destructans propagules as another possible transmission route. Methods Wing mites collected from 33 bats at four hibernation sites in the Czech Republic were inspected for the presence and load of pathogen\u27s DNA using quantitative PCR. Simultaneously, wing damage of inspected bats caused by WNS was quantified using ultraviolet light (UV) transillumination and the relationship between fungal load on wing mites and intensity of infection was subjected to correlation analysis. Results All samples of wing mites were positive for the presence of DNA of P. destructans, indicating a high probability of their role in the transmission of the pathogen\u27s propagules between bats. Conclusions Mechanical transport of adhesive P. destructans spores and mycelium fragments on the body of spinturnicid mites is highly feasible. The specialised lifestyle of mites, i.e., living on bat wing membranes, the sites most typically affected by fungal growth, enables pathogen transport. Moreover, P. destructans metabolic traits suggest an ability to grow and sporulate on a range of organic substrates, including insects, which supports the possibility of growth on bat ectoparasites, at least in periods when bats roost in cold environments and enter torpor. In addition to transport of fungal propagules, mites may facilitate entry of fungal hyphae into the epidermis through injuries caused by biting

    Age-related mating rates among ecologically distinct lineages of bedbugs, Cimex lectularius

    No full text
    Abstract Understanding how many mates an animal has in its lifetime is a critical factor in sexual selection. At the same time, differences in an organism's ecology, such as the quantity and quality of food, could be reflected in different mating rates. Mating rate had a significant effect on female net fitness (i.e., lifetime offspring production), however, laboratory measurements cannot well mirror the situation in wild. The common bedbug (Cimex lectularius) is a well-established model for studying traumatic insemination and sexual conflict. The species comprises two host lineages that feed on bats (BL) or humans (HL). HL can constantly feed on human hosts throughout the year, while BLs feed only during summer months when their bat hosts occupy the roosts. Because mating in female bedbugs is closely linked to foraging, this system provides a valuable model to study mating variation in the field. We established a new method for estimating age-dependent mating rates of females in the wild by relating the fluorescent pigment accumulation in the eyes of females to the number of mating scars that manifest as melanized spots caused by the injection of sperm through the wall of the female abdomen by the male into the spermalege. In addition, using laboratory bedbugs we found that three and a half observed matings on average lead to one observed melanized mating scar. Although young BL and HL females (with low pteridine concentrations) did not differ in the number of matings, the mating rate increased with age only in HL but not in BL females. We sampled on average older BL than HL females. The lack of access to food (bat blood) during winter could explain the lack of increase in the number of scars with age in BL. In species where mating leaves visible marks, using fluorescent pigments to determine female age (applicable to most arthropods) could be an important tool to study sexual selection and mating rate in the wild. The method can help formulate sustainable and biologically lucid approaches for their control

    Ecological values of intermittent rivers for terrestrial vertebrate fauna

    No full text
    Rivers are generally considered critical habitats for biodiversity; however, this often ignores the fact that many rivers may run dry and support terrestrial as well as aquatic fauna. Here, we investigated the ecological value of intermittent rivers for terrestrial vertebrates by installing camera traps along rivers subject to varying dry periods in two contrasting European climatic zones. We then analysed i) species presence and behaviours (as a proxy of ecological functions) on perennial and intermittent streams; ii) environmental (hydrological and geomorphological) and anthropogenic factors affecting the frequency of occurrence and number of species recorded; and iii) the importance of hydrological factors as regards ecological functioning. In both study areas, we recorded a higher number of species and individuals along intermittent streams than perennial streams, with highest values in intermittent reaches exhibiting shorter dry periods. Both abundance and species richness were strongly affected by hydrological factors in both study areas, including not only the occurrence but also the duration of the dry period. Dry channels played a key role as migration corridors and as a source of food, being used more frequently than riparian habitats when the river ran dry. Our findings indicate that terrestrial vertebrate fauna benefit from dry phases in rivers. Intermittent rivers, supporting a high abundance and diversity of fauna, should be considered as target ecosystems for wildlife conservation. Not doing so will jeopardise urgently needed conservation strategies in the face of accelerating global climate change
    corecore