11 research outputs found

    Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial

    Get PDF
    Background: Tranexamic acid reduces surgical bleeding and reduces death due to bleeding in patients with trauma. Meta-analyses of small trials show that tranexamic acid might decrease deaths from gastrointestinal bleeding. We aimed to assess the effects of tranexamic acid in patients with gastrointestinal bleeding. Methods: We did an international, multicentre, randomised, placebo-controlled trial in 164 hospitals in 15 countries. Patients were enrolled if the responsible clinician was uncertain whether to use tranexamic acid, were aged above the minimum age considered an adult in their country (either aged 16 years and older or aged 18 years and older), and had significant (defined as at risk of bleeding to death) upper or lower gastrointestinal bleeding. Patients were randomly assigned by selection of a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients received either a loading dose of 1 g tranexamic acid, which was added to 100 mL infusion bag of 0·9% sodium chloride and infused by slow intravenous injection over 10 min, followed by a maintenance dose of 3 g tranexamic acid added to 1 L of any isotonic intravenous solution and infused at 125 mg/h for 24 h, or placebo (sodium chloride 0·9%). Patients, caregivers, and those assessing outcomes were masked to allocation. The primary outcome was death due to bleeding within 5 days of randomisation; analysis excluded patients who received neither dose of the allocated treatment and those for whom outcome data on death were unavailable. This trial was registered with Current Controlled Trials, ISRCTN11225767, and ClinicalTrials.gov, NCT01658124. Findings: Between July 4, 2013, and June 21, 2019, we randomly allocated 12 009 patients to receive tranexamic acid (5994, 49·9%) or matching placebo (6015, 50·1%), of whom 11 952 (99·5%) received the first dose of the allocated treatment. Death due to bleeding within 5 days of randomisation occurred in 222 (4%) of 5956 patients in the tranexamic acid group and in 226 (4%) of 5981 patients in the placebo group (risk ratio [RR] 0·99, 95% CI 0·82–1·18). Arterial thromboembolic events (myocardial infarction or stroke) were similar in the tranexamic acid group and placebo group (42 [0·7%] of 5952 vs 46 [0·8%] of 5977; 0·92; 0·60 to 1·39). Venous thromboembolic events (deep vein thrombosis or pulmonary embolism) were higher in tranexamic acid group than in the placebo group (48 [0·8%] of 5952 vs 26 [0·4%] of 5977; RR 1·85; 95% CI 1·15 to 2·98). Interpretation: We found that tranexamic acid did not reduce death from gastrointestinal bleeding. On the basis of our results, tranexamic acid should not be used for the treatment of gastrointestinal bleeding outside the context of a randomised trial

    Pneumococcal carriage and serotype distribution among children with and without pneumonia in Mozambique, 2014-2016.

    No full text
    BACKGROUND:Pneumococcal colonization is a precursor to pneumonia, and pneumococcal conjugate vaccines (PCV) can decrease vaccine-type (VT) colonization. Pneumococcal colonization studies are traditionally done among healthy children in the community; however, VT colonization prevalence may differ between these children and those with pneumonia. We assessed overall and VT pneumococcal colonization and factors associated with colonization among children with and without pneumonia after Mozambique introduced 10-valent PCV (PCV10) in 2013. METHODS:We used data from ongoing pneumonia surveillance in children aged <5 years and from cross-sectional nasopharyngeal colonization surveys conducted in October 2014 -April 2015 and October 2015 -May 2016. Pneumonia was defined using WHO standard criteria for radiologically confirmed pneumonia. Children with pneumonia enrolled from January 2014 -April 2016 were compared to children without pneumonia enrolled from the cross-sectional surveys. Clinical data and nasopharyngeal (NP) swabs were collected from each child. NP specimens were cultured for pneumococci, and culture-negative specimens from children with pneumonia underwent polymerase chain reaction (PCR). RESULTS:Of 778 and 927 children with and without pneumonia, 97.4% and 27.0% were exposed to antibiotics before swab collection, respectively. Based on culture, pneumococcal colonization was 45.1% for children with and 84.5% for children without pneumonia (P<0.001); VT pneumococcal colonization was 18.6% for children with and 23.4% for children without pneumonia (P = 0.02). The addition of PCR in children with pneumonia increased overall and VT-pneumococcal colonization to 79.2% and 31.1%, respectively. In multivariable analysis including PCR results, pneumonia was associated with VT pneumococcal colonization (adjusted OR: 1.4, 95%CI: 1.10-1.78). CONCLUSION:Vaccine-type pneumococcal colonization remains common among children with and without pneumonia post-PCV10 introduction in Mozambique. In a population of children with high antibiotic exposure, the use of PCR for culture-negative NP swabs can improve assessment of pneumococcal colonization and circulating serotypes

    Pneumococcal carriage and serotype distribution among children with and without pneumonia in Mozambique, 2014-2016

    No full text
    <div><p>Background</p><p>Pneumococcal colonization is a precursor to pneumonia, and pneumococcal conjugate vaccines (PCV) can decrease vaccine-type (VT) colonization. Pneumococcal colonization studies are traditionally done among healthy children in the community; however, VT colonization prevalence may differ between these children and those with pneumonia. We assessed overall and VT pneumococcal colonization and factors associated with colonization among children with and without pneumonia after Mozambique introduced 10-valent PCV (PCV10) in 2013.</p><p>Methods</p><p>We used data from ongoing pneumonia surveillance in children aged <5 years and from cross-sectional nasopharyngeal colonization surveys conducted in October 2014 –April 2015 and October 2015 –May 2016. Pneumonia was defined using WHO standard criteria for radiologically confirmed pneumonia. Children with pneumonia enrolled from January 2014 –April 2016 were compared to children without pneumonia enrolled from the cross-sectional surveys. Clinical data and nasopharyngeal (NP) swabs were collected from each child. NP specimens were cultured for pneumococci, and culture-negative specimens from children with pneumonia underwent polymerase chain reaction (PCR).</p><p>Results</p><p>Of 778 and 927 children with and without pneumonia, 97.4% and 27.0% were exposed to antibiotics before swab collection, respectively. Based on culture, pneumococcal colonization was 45.1% for children with and 84.5% for children without pneumonia (<i>P</i><0.001); VT pneumococcal colonization was 18.6% for children with and 23.4% for children without pneumonia (<i>P</i> = 0.02). The addition of PCR in children with pneumonia increased overall and VT-pneumococcal colonization to 79.2% and 31.1%, respectively. In multivariable analysis including PCR results, pneumonia was associated with VT pneumococcal colonization (adjusted OR: 1.4, 95%CI: 1.10–1.78).</p><p>Conclusion</p><p>Vaccine-type pneumococcal colonization remains common among children with and without pneumonia post-PCV10 introduction in Mozambique. In a population of children with high antibiotic exposure, the use of PCR for culture-negative NP swabs can improve assessment of pneumococcal colonization and circulating serotypes.</p></div

    Factors associated with vaccine-type<sup>a</sup> pneumococcal colonization in children aged < 5 years in Manhiça and Maputo, Mozambique, 2014–2016.

    No full text
    <p>Factors associated with vaccine-type<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0199363#t003fn001" target="_blank"><sup>a</sup></a> pneumococcal colonization in children aged < 5 years in Manhiça and Maputo, Mozambique, 2014–2016.</p

    Pneumococcal Carriage in Burkina Faso After 13-Valent Pneumococcal Conjugate Vaccine Introduction: Results From 2 Cross-sectional Population-Based Surveys

    No full text
    Background: Burkina Faso, a country in Africa's meningitis belt, introduced 13-valent pneumococcal conjugate vaccine (PCV13) in October 2013, with 3 primary doses given at 8, 12 and 16 weeks of age. To assess whether the new PCV13 program controlled pneumococcal carriage, we evaluated overall and serotype-specific colonization among children and adults during the first 3 years after introduction. Methods: We conducted 2 population-based, cross-sectional, age-stratified surveys in 2015 and 2017 in the city of Bobo-Dioulasso. We used standardized questionnaires to collect sociodemographic, epidemiologic, and vaccination data. Consenting eligible participants provided nasopharyngeal (all ages) and oropharyngeal (≥5 years only) swab specimens. Swab specimens were plated onto blood agar either directly (2015) or after broth enrichment (2017). Pneumococci were serotyped by conventional multiplex polymerase chain reaction. We assessed vaccine effect by comparing the proportion of vaccine-type (VT) carriage among colonized individuals from a published baseline survey (2008) with each post-PCV survey. Results: We recruited 992 (2015) and 1005 (2017) participants. Among children aged &lt;5 years, 42.8% (2015) and 74.0% (2017) received ≥2 PCV13 doses. Among pneumococcal carriers aged &lt;1 year, VT carriage declined from 55.8% in 2008 to 36.9% in 2017 (difference, 18.9%; 95% confidence interval, 1.9%-35.9%; P = .03); among carriers aged 1-4 years, VT carriage declined from 55.3% to 31.8% (difference, 23.5%; 6.8%-40.2%; P = .004); and among participants aged ≥5 years, no significant change was observed. Conclusion: Within 3 years of PCV13 implementation in Burkina Faso, we documented substantial reductions in the percentage of pneumococcal carriers with a VT among children aged &lt;5 years, but not among persons aged ≥5 years. More time, a change in the PCV13 schedule, or both, may be needed to better control pneumococcal carriage in this setting.</p

    Update: Interim Guidance for the Diagnosis, Evaluation, and Management of Infants with Possible Congenital Zika Virus Infection — United States, October 2017

    No full text
    corecore