6 research outputs found
Mobile laboratory explosive destruction of natural materials: investigation of the behavior of ice and limestone under explosive loading
In the paper, the behavior of ice and natural limestone under explosion condition was investigated. The objects of study were the river ice and natural limestone quarry on Siberia. The practical significance of research due to the need to increase production of oil and gas in permafrost regions, the fight against ice jams, etc. We organized a mobile laboratory ''Explosive destruction of the natural materials" at the National Research Tomsk State University. The main purpose of the laboratory is express analyzing of explosive destruction of natural materials. The diameters and depths of explosive craters in the limestone and explosive lane in the ice were obtained. The results can be used to test new models and numerical methods for calculating shock and explosive loading of different materials, including ice
Computational modelling of mil composites fracture under dynamic loading
The processes of multilayer composites failure under dynamic loading were investigated
Computational modelling of mil composites fracture under dynamic loading
The processes of multilayer composites failure under dynamic loading were investigated
Mobile laboratory explosive destruction of natural materials: investigation of the behavior of ice and limestone under explosive loading
In the paper, the behavior of ice and natural limestone under explosion condition was investigated. The objects of study were the river ice and natural limestone quarry on Siberia. The practical significance of research due to the need to increase production of oil and gas in permafrost regions, the fight against ice jams, etc. We organized a mobile laboratory ''Explosive destruction of the natural materials" at the National Research Tomsk State University. The main purpose of the laboratory is express analyzing of explosive destruction of natural materials. The diameters and depths of explosive craters in the limestone and explosive lane in the ice were obtained. The results can be used to test new models and numerical methods for calculating shock and explosive loading of different materials, including ice