17 research outputs found
Stroke Etiology and Thrombus Computed Tomography Characteristics in Patients With Acute Ischemic Stroke:A MR CLEAN Registry Substudy
Background and Purpose - If a relationship between stroke etiology and thrombus computed tomography characteristics exists, assessing these characteristics in clinical practice could serve as a useful additional diagnostic tool for the identification of stroke subtype. Our purpose was to study the association of stroke etiology and thrombus computed tomography characteristics in patients with acute ischemic stroke due to a large vessel occlusion. Methods - For 1429 consecutive patients enrolled in the MR CLEAN Registry, we determined stroke cause as defined by the TOAST (Trial of ORG 10172 in Acute Stroke Treatment) criteria. The association of stroke etiology with the hyperdense artery sign, clot burden score, and thrombus location was estimated with univariable and multivariable binary and ordinal logistic regression. Additionally, for 367 patients with available thin-section imaging, we assessed the association of stroke etiology with absolute and relative thrombus attenuation, distance from internal carotid artery-terminus to thrombus, thrombus length, and thrombus attenuation increase with univariable and multivariable linear regression. Results - Compared with cardioembolic strokes, noncardioembolic strokes were associated with presence of hyperdense artery sign (odds ratio, 2.2 [95% CI, 1.6-3.0]), lower clot burden score (common odds ratio, 0.4 [95% CI, 0.3-0.6]), shift towards a more proximal thrombus location (common odds ratio, 0.2 [95% CI, 0.2-0.3]), higher absolute thrombus attenuation (β, 3.6 [95% CI, 0.9-6.4]), decrease in distance from the ICA-terminus (β, -5.7 [95% CI, -8.3 to -3.0]), and longer thrombi (β, 8.6 [95% CI, 6.5-10.7]), based on univariable analysis. Thrombus characteristics of strokes with undetermined cause were similar to those of cardioembolic strokes. Conclusions - Thrombus computed tomography characteristics of cardioembolic stroke are distinct from those of noncardioembolic stroke. Additionally, our study supports the general hypothesis that many cryptogenic strokes have a cardioembolic cause. Further research should focus on the use of thrombus computed tomography characteristics as a diagnostic tool for stroke cause in clinical practice
Automatic segmentation of cerebral infarcts in follow-up computed tomography images with convolutional neural networks
Background and purpose: Infarct volume is a valuable outcome measure in treatment trials of acute ischemic stroke and is strongly associated with functional outcome. Its manual volumetric assessment is, however, too demanding to be implemented in clinical practice. Objective: To assess the value of convolutional neural networks (CNNs) in the automatic segmentation of infarct volume in follow-up CT images in a large population of patients with acute ischemic stroke. Materials and methods: We included CT images of 1026 patients from a large pooling of patients with acute ischemic stroke. A reference standard for the infarct segmentation was generated by manual delineation. We introduce three CNN models for the segmentati
Stroke Etiology and Thrombus Computed Tomography Characteristics in Patients With Acute Ischemic Stroke A MR CLEAN Registry Substudy
Background and Purpose-If a relationship between stroke etiology and thrombus computed tomography characteristics exists, assessing these characteristics in clinical practice could serve as a useful additional diagnostic tool for the identification of stroke subtype. Our purpose was to study the association of stroke etiology and thrombus computed tomography characteristics in patients with acute ischemic stroke due to a large vessel occlusion.Methods-For 1429 consecutive patients enrolled in the MR CLEAN Registry, we determined stroke cause as defined by the TOAST (Trial of ORG 10172 in Acute Stroke Treatment) criteria. The association of stroke etiology with the hyperdense artery sign, clot burden score, and thrombus location was estimated with univariable and multivariable binary and ordinal logistic regression. Additionally, for 367 patients with available thin-section imaging, we assessed the association of stroke etiology with absolute and relative thrombus attenuation, distance from internal carotid artery-terminus to thrombus, thrombus length, and thrombus attenuation increase with univariable and multivariable linear regression.Results-Compared with cardioembolic strokes, noncardioembolic strokes were associated with presence of hyperdense artery sign (odds ratio, 2.2 [95% CI, 1.6-3.0]), lower clot burden score (common odds ratio, 0.4 [95% CI, 0.3-0.6]), shift towards a more proximal thrombus location (common odds ratio, 0.2 [95% CI, 0.2-0.3]), higher absolute thrombus attenuation (beta, 3.6 [95% CI, 0.9-6.4]), decrease in distance from the ICA-terminus (beta, -5.7 [95% CI, -8.3 to -3.0]), and longer thrombi (beta, 8.6 [95% CI, 6.5-10.7]), based on univariable analysis. Thrombus characteristics of strokes with undetermined cause were similar to those of cardioembolic strokes.Conclusions-Thrombus computed tomography characteristics of cardioembolic stroke are distinct from those of noncardioembolic stroke. Additionally, our study supports the general hypothesis that many cryptogenic strokes have a cardioembolic cause. Further research should focus on the use of thrombus computed tomography characteristics as a diagnostic tool for stroke cause in clinical practice.Paroxysmal Cerebral Disorder
Cardiovascular benefits of acupressure (Jin Shin) following stroke
Background and Purpose- If a relationship between stroke etiology and thrombus computed tomography characteristics exists, assessing these characteristics in clinical practice could serve as a useful additional diagnostic tool for the identification of stroke subtype. Our purpose was to study the association of stroke etiology and thrombus computed tomography characteristics in patients with acute ischemic stroke due to a large vessel occlusion. Methods- For 1429 consecutive patients enrolled in the MR CLEAN Registry, we determined stroke cause as defined by the TOAST (Trial of ORG 10172 in Acute Stroke Treatment) criteria. The association of stroke etiology with the hyperdense artery sign, clot burden score, and thrombus location was estimated with univariable and multivariable binary and ordinal logistic regression. Additionally, for 367 patients with available thin-section imaging, we assessed the association of stroke etiology with absolute and relative thrombus attenuation, distance from internal carotid artery-terminus to thrombus, thrombus length, and thrombus attenuation increase with univariable and multivariable linear regression. Results- Compared with cardioembolic strokes, noncardioembolic strokes were associated with presence of hyperdense artery sign (odds ratio, 2.2 [95% CI, 1.6-3.0]), lower clot burden score (common odds ratio, 0.4 [95% CI, 0.3-0.6]), shift towards a more proximal thrombus location (common odds ratio, 0.2 [95% CI, 0.2-0.3]), higher absolute thrombus attenuation (beta, 3.6 [95% CI, 0.9-6.4]), decrease in distance from the ICA-terminus (beta, -5.7 [95% CI, -8.3 to -3.0]), and longer thrombi (beta, 8.6 [95% CI, 6.5-10.7]), based on univariable analysis. Thrombus characteristics of strokes with undetermined cause were similar to those of cardioembolic strokes. Conclusions- Thrombus computed tomography characteristics of cardioembolic stroke are distinct from those of noncardioembolic stroke. Additionally, our study supports the general hypothesis that many cryptogenic strokes have a cardioembolic cause. Further research should focus on the use of thrombus computed tomography characteristics as a diagnostic tool for stroke cause in clinical practice
Thrombus imaging characteristics within acute ischemic stroke: similarities and interdependence
Background The effects of thrombus imaging characteristics on procedural and clinical outcomes after ischemic stroke are increasingly being studied. These thrombus characteristics - for eg, size, location, and density - are commonly analyzed as separate entities. However, it is known that some of these thrombus characteristics are strongly related. Multicollinearity can lead to unreliable prediction models. We aimed to determine the distribution, correlation and clustering of thrombus imaging characteristics based on a large dataset of anterior-circulation acute ischemic stroke patients. Methods We measured thrombus imaging characteristics in the MR CLEAN Registry dataset, which included occlusion location, distance from the intracranial carotid artery to the thrombus (DT), thrombus length, density, perviousness, and clot burden score (CBS). We assessed intercorrelations with Spearman's coefficient (rho) and grouped thrombi based on 1) occlusion location and 2) thrombus length, density and perviousness using unsupervised clustering. Results We included 934 patients, of which 22% had an internal carotid artery (ICA) occlusion, 61% M1, 16% M2, and 1% another occlusion location. All thrombus characteristics were significantly correlated. Higher CBS was strongly correlated with longer DT (rho=0.67, p<0.01), and moderately correlated with shorter thrombus length (rho=-0.41, p<0.01). In more proximal occlusion locations, thrombi were significantly longer, denser, and less pervious. Unsupervised clustering analysis resulted in four thrombus groups; however, the cohesion within and distinction between the groups were weak. Conclusions Thrombus imaging characteristics are significantly intercorrelated - strong correlations should be considered in future predictive modeling studies. Clustering analysis showed there are no distinct thrombus archetypes - novel treatments should consider this thrombus variability.Paroxysmal Cerebral Disorder
Endovascular treatment for calcified cerebral emboli in patients with acute ischemic stroke
OBJECTIVE Calcified cerebral emboli (CCE) are a rare cause of acute ischemic stroke. The authors aimed to assess the association of CCE with functional outcome, successful reperfusion, and mortality. Furthermore, they aimed to assess the effectiveness of intravenous alteplase treatment and endovascular treatment (EVT), as well as the best first-line EVT approach in patients with CCE. METHODS The Multicenter Randomized Controlled Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands (MR CLEAN) Registry is a prospective, observational multicenter registry of patients treated with EVT for acute ischemic stroke in 16 intervention hospitals in the Netherlands. The association of CCE with functional outcome, reperfusion, and mortality was evaluated using logistic regression models. Univariable comparisons were made to determine the effectiveness of intravenous alteplase treatment and the best first-line EVT approach in CCE patients. RESULTS The study included 3077 patients from the MR CLEAN Registry. Fifty-five patients (1.8%) had CCE. CCE were not significantly associated with worse functional outcome (adjusted common OR 0.71, 95% CI 0.44-1.15), and 29% of CCE patients achieved functional independence. An extended Thrombolysis in Cerebral Infarction score >= 2B was significantly less often achieved in CCE patients compared to non-CCE patients (adjusted OR [aOR] 0.52, 95% CI 0.28- 0.97). Symptomatic intracranial hemorrhage occurred in 8 CCE patients (15%) vs 171 of 3022 non-CCE patients (6%; p = 0.01). The median improvement on the National Institutes of Health Stroke Scale (NIHSS) was 2 in CCE patients versus 4 in non-CCE patients (p = 0.008). CCE were not significantly associated with mortality (aOR 1.16, 95% CI 0.64-2.12). Intravenous alteplase use in CCE patients was not associated with functional outcome or reperfusion. In CCE patients with successful reperfusion, stent retrievers were more often used as the primary treatment device (p = 0.04). CONCLUSIONS While patients with CCE had significantly lower reperfusion rates and less improvement on the NIHSS after EVT, CCE were not significantly associated with worse functional outcome or higher mortality rates. Therefore, EVT should still be considered in this specific group of patients
A convolutional neural network for anterior intra-arterial thrombus detection and segmentation on non-contrast computed tomography of patients with acute ischemic stroke
The aim of this study was to develop a convolutional neural network (CNN) that automatically detects and segments intra-arterial thrombi on baseline non-contrast computed tomography (NCCT) scans. We retrospectively collected computed tomography (CT)-scans of patients with an anterior circulation large vessel occlusion (LVO) from the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands trial, both for training (n = 86) and validation (n = 43). For testing we included patients with (n = 58) and without (n = 45) an LVO from our comprehensive stroke center. Ground truth was established by consensus between two experts using both CT angiography and NCCT. We evaluated the CNN for correct identification of a thrombus, its location and thrombus segmentation and compared these with the results of a neurologist in training and expert neuroradiologist. Sensitivity of the CNN thrombus detection was 0.86, vs. 0.95 and 0.79 for the neuroradiologists. Specificity was 0.65 for the network vs. 0.58 and 0.82 for the neuroradiologists. The CNN correctly identified the location of the thrombus in 79% of the cases, compared to 81% and 77% for the neuroradiologists. The sensitivity and specificity for thrombus identification and the rate for correct thrombus location assessment by the CNN were similar to those of expert neuroradiologists