255 research outputs found

    Quality Assessment of Photoplethysmography Signals For Cardiovascular Biomarkers Monitoring Using Wearable Devices

    Full text link
    Photoplethysmography (PPG) is a non-invasive technology that measures changes in blood volume in the microvascular bed of tissue. It is commonly used in medical devices such as pulse oximeters and wrist worn heart rate monitors to monitor cardiovascular hemodynamics. PPG allows for the assessment of parameters (e.g., heart rate, pulse waveform, and peripheral perfusion) that can indicate conditions such as vasoconstriction or vasodilation, and provides information about microvascular blood flow, making it a valuable tool for monitoring cardiovascular health. However, PPG is subject to a number of sources of variations that can impact its accuracy and reliability, especially when using a wearable device for continuous monitoring, such as motion artifacts, skin pigmentation, and vasomotion. In this study, we extracted 27 statistical features from the PPG signal for training machine-learning models based on gradient boosting (XGBoost and CatBoost) and Random Forest (RF) algorithms to assess quality of PPG signals that were labeled as good or poor quality. We used the PPG time series from a publicly available dataset and evaluated the algorithm s performance using Sensitivity (Se), Positive Predicted Value (PPV), and F1-score (F1) metrics. Our model achieved Se, PPV, and F1-score of 94.4, 95.6, and 95.0 for XGBoost, 94.7, 95.9, and 95.3 for CatBoost, and 93.7, 91.3 and 92.5 for RF, respectively. Our findings are comparable to state-of-the-art reported in the literature but using a much simpler model, indicating that ML models are promising for developing remote, non-invasive, and continuous measurement devices.Comment: 9 page

    Global Analyses Of Ceratocystis Cacaofunesta Mitochondria: From Genome To Proteome.

    Get PDF
    The ascomycete fungus Ceratocystis cacaofunesta is the causal agent of wilt disease in cacao, which results in significant economic losses in the affected producing areas. Despite the economic importance of the Ceratocystis complex of species, no genomic data are available for any of its members. Given that mitochondria play important roles in fungal virulence and the susceptibility/resistance of fungi to fungicides, we performed the first functional analysis of this organelle in Ceratocystis using integrated omics approaches. The C. cacaofunesta mitochondrial genome (mtDNA) consists of a single, 103,147-bp circular molecule, making this the second largest mtDNA among the Sordariomycetes. Bioinformatics analysis revealed the presence of 15 conserved genes and 37 intronic open reading frames in C. cacaofunesta mtDNA. Here, we predicted the mitochondrial proteome (mtProt) of C. cacaofunesta, which is comprised of 1,124 polypeptides - 52 proteins that are mitochondrially encoded and 1,072 that are nuclearly encoded. Transcriptome analysis revealed 33 probable novel genes. Comparisons among the Gene Ontology results of the predicted mtProt of C. cacaofunesta, Neurospora crassa and Saccharomyces cerevisiae revealed no significant differences. Moreover, C. cacaofunesta mitochondria were isolated, and the mtProt was subjected to mass spectrometric analysis. The experimental proteome validated 27% of the predicted mtProt. Our results confirmed the existence of 110 hypothetical proteins and 7 novel proteins of which 83 and 1, respectively, had putative mitochondrial localization. The present study provides the first partial genomic analysis of a species of the Ceratocystis genus and the first predicted mitochondrial protein inventory of a phytopathogenic fungus. In addition to the known mitochondrial role in pathogenicity, our results demonstrated that the global function analysis of this organelle is similar in pathogenic and non-pathogenic fungi, suggesting that its relevance in the lifestyle of these organisms should be based on a small number of specific proteins and/or with respect to differential gene regulation. In this regard, particular interest should be directed towards mitochondrial proteins with unknown function and the novel protein that might be specific to this species. Further functional characterization of these proteins could enhance our understanding of the role of mitochondria in phytopathogenicity.149

    Screening of Strongyloides infection using an ELISA test in transplant candidates

    Get PDF
    OBJECTIVES: Hyperinfection or disseminated strongyloidiasis has been frequently reported after transplants and is related to high mortality. This study aimed to screen for strongyloidiasis using serological diagnoses in transplant candidates. METHODS: An ELISA test was performed with filariform larvae of Strongyloides venezuelensis as a source of antigen. RESULTS: In the serum from transplant candidates, anti-Strongyloides IgG antibodies were detected in 35/150 (23.3%) samples by soluble fractions in phosphate buffered saline (PBS), 31/150 (20.7%) samples by soluble fractions in Tris-HCl, 27/150 (18.0%) samples by membrane fractions in PBS and 22/150 (14.7%) samples by membrane fractions in Tris-HCl. CONCLUSIONS: The present results suggest the ELISA test, ideally using soluble fractions of filariform larvae S. venezuelensis in PBS, as an additional strategy for the diagnosis of strongyloidiasis in transplant candidates

    Development of a recombinant fusion protein based on the dynein light chain LC8 for non-viral gene delivery

    Get PDF
    The low efficiency of gene transfer is a recurrent problem in DNA vaccine development and gene therapy studies using non-viral vectors such as plasmid DNA (pDNA). This is mainly due to the fact that during their traffic to the target cell's nuclei, plasmid vectors must overcome a series of physical, enzymatic and diffusional barriers. The main objective of this work is the development of recombinant proteins specifically designed for pDNA delivery, which take advantage of molecular motors like dynein, for the transport of cargos from the periphery to the centrosome of mammalian cells. A DNA binding sequence was fused to the N-terminus of the recombinant human dynein light chain LC8. Expression studies indicated that the fusion protein was correctly expressed in soluble form using E. coli BL21(DE3) strain. As expected, gel permeation assays found the purified protein mainly present as dimers, the functional oligomeric state of LC8. Gel retardation assays and atomic force microscopy proved the ability of the fusion protein to interact and condense pDNA. Zeta potential measurements indicated that LC8 with DNA binding domain (LD4) has an enhanced capacity to interact and condense pDNA, generating positively charged complexes. Transfection of cultured HeLa cells confirmed the ability of the LD4 to facilitate pDNA uptake and indicate the involvement of the retrograde transport in the intracellular trafficking of pDNA: LD4 complexes. Finally, cytotoxicity studies demonstrated a very low toxicity of the fusion protein vector, indicating the potential for in vivo applications. The study presented here is part of an effort to develop new modular shuttle proteins able to take advantage of strategies used by viruses to infect mammalian cells, aiming to provide new tools for gene therapy and DNA vaccination studies. (C) 2012 Elsevier B.V. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP (Sao Paulo, Brazil)Laboratorio de Espectroscopia e Calorimetria (LEC), Laboratorio Nacional de Biociencias - LNBio (Campinas, Brazil

    Cross-species chromosome painting tracks the independent origin of multiple sex chromosomes in two cofamiliar Erythrinidae fishes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Erythrinidae fish family is characterized by a large variation with respect to diploid chromosome numbers and sex-determining systems among its species, including two multiple X<sub>1</sub>X<sub>2</sub>Y sex systems in <it>Hoplias malabaricus </it>and <it>Erythrinus erythrinus</it>. At first, the occurrence of a same sex chromosome system within a family suggests that the sex chromosomes are correlated and originated from ancestral XY chromosomes that were either homomorphic or at an early stage of differentiation. To identify the origin and evolution of these X<sub>1</sub>X<sub>2</sub>Y sex chromosomes, we performed reciprocal cross-species FISH experiments with two sex-chromosome-specific probes designed from microdissected X<sub>1 </sub>and Y chromosomes of <it>H. malabaricus </it>and <it>E. erythrinus</it>, respectively.</p> <p>Results</p> <p>Our results yield valuable information regarding the origin and evolution of these sex chromosome systems. Our data indicate that these sex chromosomes evolved independently in these two closed related Erythrinidae species. Different autosomes were first converted into a poorly differentiated XY sex pair in each species, and additional chromosomal rearrangements produced both X<sub>1</sub>X<sub>2</sub>Y sex systems that are currently present.</p> <p>Conclusions</p> <p>Our data provide new insights into the origin and evolution of sex chromosomes, which increases our knowledge about fish sex chromosome evolution.</p

    Growth of Long Range Forward-Backward Multiplicity Correlations with Centrality in Au+Au Collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    Forward-backward multiplicity correlation strengths have been measured with the STAR detector for Au+Au and p+p\textit{p+p} collisions at sNN\sqrt{s_{NN}} = 200 GeV. Strong short and long range correlations (LRC) are seen in central Au+Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short range correlations are observed in peripheral Au+Au collisions. Both the Dual Parton Model (DPM) and the Color Glass Condensate (CGC) predict the existence of the long range correlations. In the DPM the fluctuation in the number of elementary (parton) inelastic collisions produces the LRC. In the CGC longitudinal color flux tubes generate the LRC. The data is in qualitative agreement with the predictions from the DPM and indicates the presence of multiple parton interactions.Comment: 6 pages, 3 figures The abstract has been slightly modifie

    Forward Neutral Pion Transverse Single Spin Asymmetries in p+p Collisions at \sqrt{s}=200 GeV

    Get PDF
    We report precision measurements of the Feynman-x dependence, and first measurements of the transverse momentum dependence, of transverse single spin asymmetries for the production of \pi^0 mesons from polarized proton collisions at \sqrt{s}=200 GeV. The x_F dependence of the results is in fair agreement with perturbative QCD model calculations that identify orbital motion of quarks and gluons within the proton as the origin of the spin effects. Results for the p_T dependence at fixed x_F are not consistent with pQCD-based calculations.Comment: 6 pages, 4 figure

    Longitudinal Spin Transfer to Λ\Lambda and Λˉ\bar{\Lambda} Hyperons in Polarized Proton-Proton Collisions at s\sqrt{s} = 200 GeV

    Get PDF
    The longitudinal spin transfer, DLLD_{LL}, from high energy polarized protons to Λ\Lambda and Λˉ\bar{\Lambda} hyperons has been measured for the first time in proton-proton collisions at s=200GeV\sqrt{s} = 200 \mathrm{GeV} with the STAR detector at RHIC. The measurements cover pseudorapidity, η\eta, in the range η<1.2|\eta| < 1.2 and transverse momenta, pTp_\mathrm{T}, up to 4GeV/c4 \mathrm{GeV}/c. The longitudinal spin transfer is found to be DLL=0.03±0.13(stat)±0.04(syst)D_{LL}= -0.03\pm 0.13(\mathrm{stat}) \pm 0.04(\mathrm{syst}) for inclusive Λ\Lambda and DLL=0.12±0.08(stat)±0.03(syst)D_{LL} = -0.12 \pm 0.08(\mathrm{stat}) \pm 0.03(\mathrm{syst}) for inclusive Λˉ\bar{\Lambda} hyperons with =0.5 = 0.5 and =3.7GeV/c = 3.7 \mathrm{GeV}/c. The dependence on η\eta and pTp_\mathrm{T} is presented.Comment: 5 pages, 4 figure
    corecore