17 research outputs found
Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway
Cortactin phosphorylation induces recruitment of the sodium-hydrogen exchanger NHE1 to invadopodia, resulting in pH changes that regulate cortactin-cofilin binding and invadopodium dynamics
The role of the tissue microenvironment in the regulation of cancer cell motility and invasion
During malignant neoplastic progression the cells undergo genetic and epigenetic cancer-specific alterations that finally lead to a loss of tissue homeostasis and restructuring of the microenvironment. The invasion of cancer cells through connective tissue is a crucial prerequisite for metastasis formation. Although cell invasion is foremost a mechanical process, cancer research has focused largely on gene regulation and signaling that underlie uncontrolled cell growth. More recently, the genes and signals involved in the invasion and transendothelial migration of cancer cells, such as the role of adhesion molecules and matrix degrading enzymes, have become the focus of research. In this review we discuss how the structural and biomechanical properties of extracellular matrix and surrounding cells such as endothelial cells influence cancer cell motility and invasion. We conclude that the microenvironment is a critical determinant of the migration strategy and the efficiency of cancer cell invasion
Up-Regulation of Rho/ROCK Signaling in Sarcoma Cells Drives Invasion and Increased Generation of Protrusive Forces
Tumor cell invasion is the most critical step of metastasis. Determination of the mode of invasion within the particular tumor is critical for effective cancer treatment. Protease-independent amoeboid mode of invasion has been described in carcinoma cells and more recently in sarcoma cells on treatment with protease inhibitors. To analyze invasive behavior, we compared highly metastatic sarcoma cells with parental nonmetastatic cells. The metastatic cells exhibited a functional up-regulation of Rho/ROCK signaling and, similarly to carcinoma cells, an amoeboid mode of invasion. Using confocal and traction force microscopy, we showed that an up-regulation of Rho/ROCK signaling leads to increased cytoskeletal dynamics, myosin light chain localization, and increased tractions at the leading edge of the cells and that all of these contributed to increased cell invasiveness in a three-dimensional collagen matrix. We conclude that cells of mesenchymal origin can use the amoeboid nonmesenchymal mode of invasion as their primary invading mechanism and show the dependence of ROCK-mediated amoeboid mode of invasion on the increased capacity of cells to generate force. (Mol Cancer Res 2008;6(9):141020
Tyrosine phosphorylation within the SH3 domain regulates CAS subcellular localization, cell migration, and invasiveness
Crk-associated substrate (CAS) Tyr-12 phosphorylation has an important role in ligand binding, CAS localization, turnover of adhesion structures, migration, and invasiveness. CAS Tyr-12 phosphorylation thus possibly represents a novel regulatory mechanism by which CAS-mediated signaling could trigger different cellular responses