17 research outputs found

    A Stochastic Hybrid Framework for Driver Behavior Modeling Based on Hierarchical Dirichlet Process

    Full text link
    Scalability is one of the major issues for real-world Vehicle-to-Vehicle network realization. To tackle this challenge, a stochastic hybrid modeling framework based on a non-parametric Bayesian inference method, i.e., hierarchical Dirichlet process (HDP), is investigated in this paper. This framework is able to jointly model driver/vehicle behavior through forecasting the vehicle dynamical time-series. This modeling framework could be merged with the notion of model-based information networking, which is recently proposed in the vehicular literature, to overcome the scalability challenges in dense vehicular networks via broadcasting the behavioral models instead of raw information dissemination. This modeling approach has been applied on several scenarios from the realistic Safety Pilot Model Deployment (SPMD) driving data set and the results show a higher performance of this model in comparison with the zero-hold method as the baseline.Comment: This is the accepted version of the paper in 2018 IEEE 88th Vehicular Technology Conference (VTC2018-Fall) (references added, title and abstract modified

    A Driver Behavior Modeling Structure Based on Non-parametric Bayesian Stochastic Hybrid Architecture

    Full text link
    Heterogeneous nature of the vehicular networks, which results from the co-existence of human-driven, semi-automated, and fully autonomous vehicles, is a challenging phenomenon toward the realization of the intelligent transportation systems with an acceptable level of safety, comfort, and efficiency. Safety applications highly suffer from communication resource limitations, specifically in dense and congested vehicular networks. The idea of model-based communication (MBC) has been recently proposed to address this issue. In this work, we propose Gaussian Process-based Stochastic Hybrid System with Cumulative Relevant History (CRH-GP-SHS) framework, which is a hierarchical stochastic hybrid modeling structure, built upon a non-parametric Bayesian inference method, i.e. Gaussian processes. This framework is proposed in order to be employed within the MBC context to jointly model driver/vehicle behavior as a stochastic object. Non-parametric Bayesian methods relieve the limitations imposed by non-evolutionary model structures and enable the proposed framework to properly capture different stochastic behaviors. The performance of the proposed CRH-GP-SHS framework at the inter-mode level has been evaluated over a set of realistic lane change maneuvers from NGSIM-US101 dataset. The results show a noticeable performance improvement for GP in comparison to the baseline constant speed model, specifically in critical situations such as highly congested networks. Moreover, an augmented model has also been proposed which is a composition of GP and constant speed models and capable of capturing the driver behavior under various network reliability conditions.Comment: This work has been accepted in 2018 IEEE Connected and Automated Vehicles Symposium (CAVS 2018

    Scalable Cellular V2X Solutions: Large-Scale Deployment Challenges of Connected Vehicle Safety Networks

    Full text link
    Vehicle-to-Everything (V2X) communication is expected to accomplish a long-standing goal of the Connected and Autonomous Vehicle (CAV) community to bring connected vehicles to roads on a large scale. A major challenge, and perhaps the biggest hurdle on the path towards this goal is the scalability issues associated with it, especially when vehicular safety is concerned. As a major stakeholder, 3rd Generation Partnership Project (3GPP) based Cellular V2X (C-V2X) community has long been trying to research on whether vehicular networks are able to support the safety-critical applications in high-density vehicular scenarios. This paper attempts to answer this by first presenting an overview on the scalability challenges faced by 3GPP Release 14 Long Term Evolution C-V2X (LTE-V2X) using the PC5 sidelink interface for low and heavy-density traffic scenarios. Next, it demonstrates a series of solutions that address network congestion, packet losses and other scalability issues associated with LTE-V2X to enable this communication technology for commercial deployment. In addition, a brief survey is provided into 3GPP Release 16 5G New Radio V2X (NR-V2X) that utilizes the NR sidelink interface and works as an evolution of C-V2X towards better performance for V2X communications including new enhanced V2X (eV2X) scenarios that possess ultra-low-latency and high-reliability requirements

    Learning-based social coordination to improve safety and robustness of cooperative autonomous vehicles in mixed traffic

    Full text link
    It is expected that autonomous vehicles(AVs) and heterogeneous human-driven vehicles(HVs) will coexist on the same road. The safety and reliability of AVs will depend on their social awareness and their ability to engage in complex social interactions in a socially accepted manner. However, AVs are still inefficient in terms of cooperating with HVs and struggle to understand and adapt to human behavior, which is particularly challenging in mixed autonomy. In a road shared by AVs and HVs, the social preferences or individual traits of HVs are unknown to the AVs and different from AVs, which are expected to follow a policy, HVs are particularly difficult to forecast since they do not necessarily follow a stationary policy. To address these challenges, we frame the mixed-autonomy problem as a multi-agent reinforcement learning (MARL) problem and propose an approach that allows AVs to learn the decision-making of HVs implicitly from experience, account for all vehicles' interests, and safely adapt to other traffic situations. In contrast with existing works, we quantify AVs' social preferences and propose a distributed reward structure that introduces altruism into their decision-making process, allowing the altruistic AVs to learn to establish coalitions and influence the behavior of HVs.Comment: arXiv admin note: substantial text overlap with arXiv:2202.0088
    corecore