18,334 research outputs found

    Relativistic Jets and Long-Duration Gamma-ray Bursts from the Birth of Magnetars

    Full text link
    We present time-dependent axisymmetric magnetohydrodynamic simulations of the interaction of a relativistic magnetized wind produced by a proto-magnetar with a surrounding stellar envelope, in the first 10\sim 10 seconds after core collapse. We inject a super-magnetosonic wind with E˙=1051\dot E = 10^{51} ergs s1^{-1} into a cavity created by an outgoing supernova shock. A strong toroidal magnetic field builds up in the bubble of plasma and magnetic field that is at first inertially confined by the progenitor star. This drives a jet out along the polar axis of the star, even though the star and the magnetar wind are each spherically symmetric. The jet has the properties needed to produce a long-duration gamma-ray burst (GRB). At 5\sim 5 s after core bounce, the jet has escaped the host star and the Lorentz factor of the material in the jet at large radii 1011\sim 10^{11} cm is similar to that in the magnetar wind near the source. Most of the spindown power of the central magnetar escapes via the relativistic jet. There are fluctuations in the Lorentz factor and energy flux in the jet on 0.010.1\sim 0.01-0.1 second timescale. These may contribute to variability in GRB emission (e.g., via internal shocks).Comment: 5 pages, 3 figures, accepted in MNRAS letter, presented at the conference "Astrophysics of Compact Objects", 1-7 July, Huangshan, Chin

    Brownian dynamics simulations of planar mixed flows of polymer solutions at finite concentrations

    Full text link
    Periodic boundary conditions for planar mixed flows are implemented in the context of a multi-chain Brownian dynamics simulation algorithm. The effect of shear rate γ˙\dot{\gamma}, and extension rate ϵ˙\dot{\epsilon}, on the size of polymer chains, \left, and on the polymer contribution to viscosity, η\eta, is examined for solutions of FENE dumbbells at finite concentrations, with excluded volume interactions between the beads taken into account. The influence of the mixedness parameter, χ\chi, and flow strength, Γ˙\dot{\Gamma}, on \left and η\eta, is also examined, where χ0\chi \rightarrow 0 corresponds to pure shear flow, and χ1\chi \rightarrow 1 corresponds to pure extensional flow. It is shown that there exists a critical value, χc\chi_\text{c}, such that the flow is shear dominated for χ<χc\chi < \chi_\text{c}, and extension dominated for χ>χc\chi > \chi_\text{c}.Comment: 18 pages, 12 figures, to appear in Chemical Engineering Scienc

    Nitrogen Oxide Concentrations in Natural Waters on Early Earth

    Full text link
    A key challenge in origins-of-life studies is estimating the abundances of species relevant to the chemical pathways proposed to have contributed to the emergence of life on early Earth. Dissolved nitrogen oxide anions (NOX_{X}^{-}), in particular nitrate (NO3_{3}^{-}) and nitrite (NO2_{2}^{-}), have been invoked in diverse origins-of-life chemistry, from the oligomerization of RNA to the emergence of protometabolism. Recent work has calculated the supply of NOX_{X}^{-} from the prebiotic atmosphere to the ocean, and reported steady-state [NOX_{X}^{-}] to be high across all plausible parameter space. These findings rest on the assumption that NOX_{X}^{-} is stable in natural waters unless processed at a hydrothermal vent. Here, we show that NOX_{X}^{-} is unstable in the reducing environment of early Earth. Sinks due to UV photolysis and reactions with reduced iron (Fe2+^{2+}) suppress [NOX_{X}^{-}] by several orders of magnitude relative to past predictions. For pH=6.58=6.5-8 and T=050T=0-50^\circC, we find that it is most probable that NOX_{X}^{-}]<1 μ<1~\muM in the prebiotic ocean. On the other hand, prebiotic ponds with favorable drainage characteristics may have sustained [NOX_{X}^{-}]1 μ\geq 1~\muM. As on modern Earth, most NOX_{X}^{-} on prebiotic Earth should have been present as NO3_{3}^{-}, due to its much greater stability. These findings inform the kind of prebiotic chemistries that would have been possible on early Earth. We discuss the implications for proposed prebiotic chemistries, and highlight the need for further studies of NOX_{X}^{-} kinetics to reduce the considerable uncertainties in predicting [NOX_{X}^{-}] on early Earth.Comment: In review for publication at Geochemistry, Geophysics, and Geosystems (G-cubed). Comments, questions, and criticism solicited; please contact corresponding author at [email protected]. SI at: https://web-cert.mit.edu/sukrit/Public/nox_si.pdf. GitHub at: https://github.com/sukritranjan/no

    Boundary Dissipation in a Driven Hard Disk System

    Full text link
    A simulation is performed aiming at checking the existence of a well defined stationary state for a two dimensional system of driven hard disks when energy dissipation takes place at the system boundaries and no bulk impurities are presentComment: 5 pages, 7 figure

    O VI and Multicomponent H I Absorption Associated with a Galaxy Group in the Direction of PG0953+415: Physical Conditions and Baryonic Content

    Get PDF
    We report the discovery of an O VI absorption system at z(abs) = 0.14232 in a high resolution FUV spectrum of PG0953+415 obtained with the Space Telescope Imaging Spectrograph (STIS). Both lines of the O VI 1032, 1038 doublet and multicomponent H I Lya absorption are detected, but the N V doublet and the strong lines of C II and Si III are not apparent. We examine the ionization mechanism of the O VI absorber and find that while theoretical considerations favor collisional ionization, it is difficult to observationally rule out photoionization. If the absorber is collisionally ionized, it may not be in equilibrium due to the rapid cooling of gas in the appropriate temperature range. Non-equilibrium collisionally ionized models are shown to be consistent with the observations. A WIYN survey of galaxy redshifts near the sight line has revealed a galaxy at a projected distance of 395 kpc separated by ~130 km/s from this absorber, and three additional galaxies are found within 130 km/s of this redshift with projected separations ranging from 1.0 Mpc to 3.0 Mpc. Combining the STIS observations of PG0953+415 with previous high S/N GHRS observations of H1821+643, we derive a large number of O VI absorbers per unit redshift, dN/dz ~20. We use this sample to obtain a first estimate of the cosmological mass density of the O VI systems at z ~ 0. If further observations confirm the large dN/dz derived for the O VI systems, then these absorbers trace a significant reservoir of baryonic matter at low redshift.Comment: Accepted for publication in Ap.J., vol. 542 (Oct. 10, 2000

    The Replication Argument for Incompatibilism

    Get PDF
    In this paper, I articulate an argument for incompatibilism about moral responsibility and determinism. My argument comes in the form of an extended story, modeled loosely on Peter van Inwagen’s “rollback argument” scenario. I thus call it “the replication argument.” As I aim to bring out, though the argument is inspired by so-called “manipulation” and “original design” arguments, the argument is not a version of either such argument—and plausibly has advantages over both. The result, I believe, is a more convincing incompatibilist argument than those we have considered previously

    Neutron-Rich Nuclei in Heaven and Earth

    Full text link
    An accurately calibrated relativistic parametrization is introduced to compute the ground state properties of finite nuclei, their linear response, and the structure of neutron stars. While similar in spirit to the successful NL3 parameter set, it produces an equation of state that is considerably softer -- both for symmetric nuclear matter and for the symmetry energy. This softening appears to be required for an accurate description of several collective modes having different neutron-to-proton ratios. Among the predictions of this model are a symmetric nuclear-matter incompressibility of K=230 MeV and a neutron skin thickness in 208Pb of Rn-Rp=0.21 fm. Further, the impact of such a softening on the properties of neutron stars is as follows: the model predicts a limiting neutron star mass of Mmax=1.72 Msun, a radius of R=12.66 km for a ``canonical'' M=1.4 Msun neutron star, and no (nucleon) direct Urca cooling in neutrons stars with masses below M=1.3 Msun.Comment: 4 pages, 3 tables, and no figure
    corecore