242 research outputs found

    PCV60 Cost-Effectiveness of Dabigatran for the Prevention of Stroke in Patients with Non-Valvular Atrial Fibrillation in Australia

    Get PDF

    PRS30 Identifying the Patient Population Where Treatment of Severe Allergic Asthma with Omalizumab (XOLAIR®) Exhibits Optimal Cost-Effectiveness in Australia

    Get PDF

    Cosmological model with interactions in the dark sector

    Get PDF
    A cosmological model is proposed for the current Universe consisted of non-interacting baryonic matter and interacting dark components. The dark energy and dark matter are coupled through their effective barotropic indexes, which are considered as functions of the ratio between their energy densities. It is investigated two cases where the ratio is asymptotically stable and their parameters are adjusted by considering best fits to Hubble function data. It is shown that the deceleration parameter, the densities parameters, and the luminosity distance have the correct behavior which is expected for a viable present scenario of the Universe.Comment: 6 pages, 8 figure

    Primordial Neutrinos, Cosmological Perturbations in Interacting Dark-Energy Model: CMB and LSS

    Full text link
    We present cosmological perturbation theory in neutrinos probe interacting dark-energy models, and calculate cosmic microwave background anisotropies and matter power spectrum. In these models, the evolution of the mass of neutrinos is determined by the quintessence scalar field, which is responsible for the cosmic acceleration today. We consider several types of scalar field potentials and put constraints on the coupling parameter between neutrinos and dark energy. Assuming the flatness of the universe, the constraint we can derive from the current observation is mν<0.87eV\sum m_{\nu} < 0.87 eV at the 95 % confidence level for the sum over three species of neutrinos. We also discuss on the stability issue of the our model and on the impact of the scattering term in Boltzmann equation from the mass-varying neutrinos.Comment: 26 pages Revtex, 11 figures, Add new contents and reference

    A method to extract the redshift distortions beta parameter in configuration space from minimal cosmological assumptions

    Full text link
    We present a method to extract the redshift-space distortions beta parameter in configuration space with a minimal set of cosmological assumptions. We show that a novel combination of the observed monopole and quadrupole correlation functions can remove efficiently the impact of mild non linearities and redshift errors. The method offers a series of convenient properties: it does not depend on the theoretical linear correlation function, the mean galaxy density is irrelevant, only convolutions are used, there is no explicit dependence on linear bias. Analyses based on dark matter N-body simulations and Fisher matrix demonstrate that errors of a few percent on beta are possible with a full sky, 1(Gpc/h)^3 survey centered at a redshift of unity and with negligible shot noise. We also find a baryonic feature in the normalized quadrupole in configuration space that should complicate the extraction of the growth parameter from the linear theory asymptote, but that does not have a major impact with our method.Comment: Version accepted on ApJ. Included test with N-body results. Conclusions unchanged. References added. 10 pages, 4 figure

    Le Chatelier-Braun principle in cosmological physics

    Full text link
    Assuming that dark energy may be treated as a fluid with a well defined temperature, close to equilibrium, we argue that if nowadays there is a transfer of energy between dark energy and dark matter, it must be such that the latter gains energy from the former and not the other way around.Comment: 6 pages, revtex file, no figures; version accepted for publication in General Relativity and Gravitatio

    Primordial Power Spectrum Reconstruction

    Full text link
    In order to reconstruct the initial conditions of the universe it is important to devise a method that can efficiently constrain the shape of the power spectrum of primordial matter density fluctuations in a model-independent way from data. In an earlier paper we proposed a method based on the wavelet expansion of the primordial power spectrum. The advantage of this method is that the orthogonality and multiresolution properties of wavelet basis functions enable information regarding the shape of Pin(k)P_{\rm in}(k) to be encoded in a small number of non-zero coefficients. Any deviation from scale-invariance can then be easily picked out. Here we apply this method to simulated data to demonstrate that it can accurately reconstruct an input Pin(k)P_{\rm in}(k), and present a prescription for how this method should be used on future data.Comment: 4 pages, 2 figures. JCAP accepted versio

    Mass-Varying Neutrinos from a Variable Cosmological Constant

    Full text link
    We consider, in a completely model-independent way, the transfer of energy between the components of the dark energy sector consisting of the cosmological constant (CC) and that of relic neutrinos. We show that such a cosmological setup may promote neutrinos to mass-varying particles, thus resembling a recently proposed scenario of Fardon, Nelson, and Weiner (FNW), but now without introducing any acceleronlike scalar fields. Although a formal similarity of the FNW scenario with the variable CC one can be easily established, one nevertheless finds different laws for neutrino mass variation in each scenario. We show that as long as the neutrino number density dilutes canonically, only a very slow variation of the neutrino mass is possible. For neutrino masses to vary significantly (as in the FNW scenario), a considerable deviation from the canonical dilution of the neutrino number density is also needed. We note that the present `coincidence' between the dark energy density and the neutrino energy density can be obtained in our scenario even for static neutrino masses.Comment: 8 pages, minor corrections, two references added, to apear in JCA
    corecore