18 research outputs found

    Measurement of sin2 θlept eff using eþe− pairs from γ=Z bosons produced in pp collisions at a center-of-momentum energy of 1.96 TeV

    Get PDF
    At the Fermilab Tevatron proton-antiproton (pp¯) collider, Drell-Yan lepton pairs are produced in the process pp¯→e+e−+X through an intermediate γ∗/Z boson. The forward-backward asymmetry in the polar-angle distribution of the e− as a function of the e+e−-pair mass is used to obtain sin2θlepteff, the effective leptonic determination of the electroweak-mixing parameter sin2θW. The measurement sample, recorded by the Collider Detector at Fermilab (CDF), corresponds to 9.4  fb−1 of integrated luminosity from pp¯ collisions at a center-of-momentum energy of 1.96 TeV, and is the full CDF Run II data set. The value of sin2θlepteff is found to be 0.23248±0.00053. The combination with the previous CDF measurement based on μ+μ− pairs yields sin2θlepteff=0.23221±0.00046. This result, when interpreted within the specified context of the standard model assuming sin2θW=1−M2W/M2Z and that the W- and Z-boson masses are on-shell, yields sin2θW=0.22400±0.00045, or equivalently a W-boson mass of 80.328±0.024  GeV/c2

    Constraints on models of the Higgs boson with exotic spin and parity using decays to bottom-antibottom quarks in the full CDF data set

    Get PDF
    A search for particles with the same mass and couplings as those of the standard model Higgs boson but different spin and parity quantum numbers is presented. We test two specific alternative Higgs boson hypotheses: a pseudoscalar Higgs boson with spin-parity JP=0- and a gravitonlike Higgs boson with JP=2+, assuming for both a mass of 125GeV/c2. We search for these exotic states produced in association with a vector boson and decaying into a bottom-antibottom quark pair. The vector boson is reconstructed through its decay into an electron or muon pair, or an electron or muon and a neutrino, or it is inferred from an imbalance in total transverse momentum. We use expected kinematic differences between events containing exotic Higgs bosons and those containing standard model Higgs bosons. The data were collected by the CDF experiment at the Tevatron proton-antiproton collider, operating at a center-of-mass energy of s=1.96TeV, and correspond to an integrated luminosity of 9.45fb-1. We exclude deviations from the predictions of the standard model with a Higgs boson of mass 125GeV/c2 at the level of 5 standard deviations, assuming signal strengths for exotic boson production equal to the prediction for the standard model Higgs boson, and set upper limits of approximately 30% relative to the standard model rate on the possible rate of production of each exotic state

    Study of top quark production and decays involving a tau lepton at CDF and limits on a charged Higgs boson contribution

    Get PDF
    We present an analysis of top-antitop quark production and decay into a tau lepton, tau neutrino, and bottom quark using data from 9??fb-1 of integrated luminosity at the Collider Detector at Fermilab. Dilepton events, where one lepton is an energetic electron or muon and the other a hadronically decaying tau lepton, originating from proton-antiproton collisions at vs=1.96??TeV, are used. A top-antitop quark production cross section of 8.1±2.1??pb is measured, assuming standard-model top quark decays. By separately identifying for the first time the single-tau and the ditau components, we measure the branching fraction of the top quark into the tau lepton, tau neutrino, and bottom quark to be (9.6±2.8)%. The branching fraction of top quark decays into a charged Higgs boson and a bottom quark, which would imply violation of lepton universality, is limited to be less than 5.9% at a 95% confidence level [for B(H-?t¯?)=1]

    Measurement of the dipion mass spectrum in X(3872)toJ/psipi+piX(3872) to J/psi pi^+ pi^- decays

    No full text

    Search for neutral MSSM Higgs bosons decaying to tau pairs in pbarppbar{p} collisions at sqrts=1.96sqrt{s} = 1.96 TeV

    No full text

    Search for H to b anti-b produced in association with W bosons in pbarppbar{p} collisions at sqrts=sqrt{s} = 1.96-TeV

    No full text

    A precise measurement of the WW-boson mass with the Collider Detector at Fermilab

    No full text
    We present a measurement of the WW-boson mass, MWM_W, using data corresponding to 2.2/fb of integrated luminosity collected in ppbar collisions at s\sqrt{s} = 1.96 TeV with the CDF II detector at the Fermilab Tevatron. The selected sample of 470126 WeνW\to e\nu candidates and 624708 WμνW\to\mu\nu candidates yields the measurement MW=80387±12M_W = 80387\pm 12 (stat) ±15\pm 15 (syst)=80387±19 = 80387 \pm 19 MeV/c2/c^2 . This is the most precise single measurement of the WW-boson mass to date

    Measurement of the tbartt bar{t} Production Cross Section in pbarpp bar{p} collisions at sqrtssqrt{s} = 1.96-TeV in the All Hadronic Decay Mode

    No full text

    Measurement of the leptonic asymmetry in ttbar events produced in ppbar collisions at sqrt(s)=1.96 TeV

    No full text
    We measure the asymmetry in the charge-weighted rapidity of the lepton in semileptonic ttbar decays recorded with the CDF II detector using the full Tevatron Run II sample, corresponding to an integrated luminosity of 9.4/fb. A parametrization of the asymmetry as a function of the charge-weighted rapidity is used to correct for the finite acceptance of the detector and recover the production-level asymmetry. The result of afb(lep) = 0.094 +0.032 -0.029 is to be compared to the standard model next-to-leading-order prediction of afb(lep) = 0.038 +-0.003
    corecore