1 research outputs found

    Computational analysis of transitional airflow through packed columns of spheres using the finite volume technique

    Get PDF
    Copyright © 2010 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Computers and Chemical Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computers and Chemical Engineering, Volume 34 Issue 6 (2010), DOI: 10.1016/j.compchemeng.2009.10.013We compare computational simulations of the flow of air through a packed column containing spherical particles with experimental and theoretical results for equivalent beds. The column contained 160 spherical particles at an aspect ratio N=7.14N=7.14, and the experiments and simulations were carried out at particle Reynolds numbers of (RedP=700−5000)(RedP=700−5000). Experimental measurements were taken of the pressure drop across the column and compared with the correlation of Reichelt (1972) using the fitted coefficients of Eisfeld and Schnitzlein (2001). An equivalent computational domain was prepared using Monte Carlo packing, from which computational meshes were generated and analysed in detail. Computational fluid dynamics calculations of the air flow through the simulated bed was then performed using the finite volume technique. Results for pressure drop across the column were found to correlate strongly with the experimental data and the literature correlation. The flow structure through the bed was also analysed in detail
    corecore