24 research outputs found
Regulation of nitrogen fixation in Bradyrhizobium sp. strain DOA9 involves two distinct NifA regulatory proteins that are functionally redundant during symbiosis but not during free-living growth
The Bradyrhizobium sp. DOA9 strain displays the unusual properties to have a symbiotic plasmid and to fix nitrogen during both free-living and symbiotic growth. Sequence genome analysis shows that this strain contains the structural genes of dinitrogenase (nifDK) and the nifA regulatory gene on both the plasmid and chromosome. It was previously shown that both nifDK clusters are differentially expressed depending on growth conditions, suggesting different mechanisms of regulation. In this study, we examined the functional regulatory role of the two nifA genes found on the plasmid (nifAp) and chromosome (nifAc) that encode proteins with a moderate level of identity (55%) and different structural architectures. Using gusA (beta-glucuronidase) reporter strains, we showed that both nifA genes were expressed during both the free-living and symbiotic growth stages. During symbiosis with Aeschynomene americana, mutants in only one nifA gene were not altered in their symbiotic properties, while a double nifA mutant was drastically impaired in nitrogen fixation, indicating that the two NifA proteins are functionally redundant during this culture condition. In contrast, under in vitro conditions, the nifAc mutant was unable to fix nitrogen, and no effect of the nifAp mutation was detected, indicating that NifAc is essential to activate nif genes during free-living growth. In accordance, the nitrogenase fixation deficiency of this mutant could be restored by the introduction of nifAc but not by nifAp or by two chimeric nifA genes encoding hybrid proteins with the N-terminus part of NifAc and the C-terminus of NifAp. Furthermore, transcriptional analysis by RT-qPCR of the WT and two nifA mutant backgrounds showed that NifAc and NifAp activated the expression of both chromosome and plasmid structural nifDK genes during symbiosis, while only NifAc activated the expression of nifDKc during free-living conditions. In summary, this study provides a better overview of the complex mechanisms of regulation of the nitrogenase genes in the DOA9 strain that involve two distinct NifA proteins, which are exchangeable during symbiosis for the activation of nif genes but not during free-living growth where NifAc is essential for the activation of nifDKc
New method for arbuscular mycorrhizal fungus spore separation using a microfluidic device based on manual temporary flow diversion.
Arbuscular mycorrhizal fungi are beneficial components often included in biofertilizers. Studies of the biology and utilization of these fungi are key to their successful use in the biofertilizer industry. The acquisition of isolated spores is a required step in these studies; however, spore quality control and spore separation are bottlenecks. Filtered and centrifuged spores have to be hand-picked under a microscope. The conventional procedure is skill-demanding, labor-intensive, and time-consuming. Here, we developed a microfluidic device to aid manual separation of spores from a filtered and centrifuged suspension. The device is a single spore streamer equipped with a manual temporary flow diversion (MTFD) mechanism to select single spores. Users can press a switch to generate MTFD when the spore arrives at the selection site. The targeted spore flows in a stream to the collection chamber via temporary cross flow. Using the device, spore purity, the percentage of spore numbers against the total number of particles counted in the collecting chamber reached 96.62% (median, nâ=â10) which is greater than the spore purity obtained from the conventional method (88.89% (median, nâ=â10))
Mutualistic co-evolution of T3SSs during the establishment of symbiotic relationships between Vigna radiata and Bradyrhizobia
This study supports the idea that the evolution of type III secretion system (T3SS) is one of the factors that controls Vigna radiata-bradyrhizobia symbiosis. Based on phylogenetic tree data and gene arrangements, it seems that the T3SSs of the Thai bradyrhizobial strains SUTN9-2, DOA1, and DOA9 and the Senegalese strain ORS3257 may share the same origin. Therefore, strains SUTN9-2, DOA1, DOA9, and ORS3257 may have evolved their T3SSs independently from other bradyrhizobia, depending on biological and/or geological events. For functional analyses, the rhcJ genes of ORS3257, SUTN9-2, DOA9, and USDA110 were disrupted. These mutations had cultivar-specific effects on nodulation properties. The T3SSs of ORS3257 and DOA9 showed negative effects on V. radiata nodulation, while the T3SS of SUTN9-2 showed no effect on V. radiata symbiosis. In the roots of V. radiata CN72, the expression levels of the PR1 gene after inoculation with ORS3257 and DOA9 were significantly higher than those after inoculation with ORS3257 omega T3SS, DOA9 omega T3SS, and SUTN9-2. The T3Es from ORS3257 and DOA9 could trigger PR1 expression, which ultimately leads to abort nodulation. In contrast, the T3E from SUTN9-2 reduced PR1 expression. It seems that the mutualistic relationship between SUTN9-2 and V. radiata may have led to the selection of the most well-adapted combination of T3SS and symbiotic bradyrhizobial genotype
Symbiotic properties of a chimeric Nod-independent photosynthetic Bradyrhizobium strain obtained by conjugative transfer of a symbiotic plasmid
The lateral transfer of symbiotic genes converting a predisposed soil bacteria into a legume symbiont has occurred repeatedly and independently during the evolution of rhizobia. We experimented the transfer of a symbiotic plasmid between Bradyrhizobium strains. The originality of the DOA9 donor is that it harbours a symbiotic mega-plasmid (pDOA9) containing nod, nif and T3SS genes while the ORS278 recipient has the unique property of inducing nodules on some Aeschynomene species in the absence of Nod factors (NFs). We observed that the chimeric strain ORS278-pDOA9* lost its ability to develop a functional symbiosis with Aeschynomene. indica and Aeschynomene evenia. The mutation of rhcN and nodB led to partial restoration of nodule efficiency, indicating that T3SS effectors and NFs block the establishment of the NF-independent symbiosis. Conversely, ORS278-pDOA9* strain acquired the ability to form nodules on Crotalaria juncea and Macroptillium artropurpureum but not on NF-dependent Aeschynomene (A. afraspera and A. americana), suggesting that the ORS278 strain also harbours incompatible factors that block the interaction with these species. These data indicate that the symbiotic properties of a chimeric rhizobia cannot be anticipated due to new combination of symbiotic and non-symbiotic determinants that may interfere during the interaction with the host plant
Identification of salt-tolerant Sinorhizobium sp. strain BL3 membrane proteins based on proteomics.
Sinorhizobium sp. BL3 is a salt-tolerant strain that can fix atmospheric nitrogen in symbiosis with leguminous host plants under salt-stress conditions. Since cell membranes are the first barrier to environmental change, it is interesting to explore the membrane proteins within this protective barrier under salt stress. The protein contents of membrane-enriched fractions obtained from BL3 were analyzed by nanoflow liquid chromatography interfaced with electrospray ionization tandem mass spectrometry. A total of 105 membrane proteins were identified. These proteins could be classified into 17 functional categories, the two biggest of which were energy production and conversion, and proteins not in clusters of orthologous groups (COGs). In addition, a comparative analysis of membrane proteins between salt-stressed and non-stressed BL3 cells was conducted using a membrane enrichment method and off-line SCX fractionation coupled to nanoLC-MS/MS. These techniques would be useful for further comparative analysis of membrane proteins that function in the response to environmental stress
Rhizobium-legume symbiosis in the absence of Nod factors : two possible scenarios with or without the T3SS
The occurrence of alternative Nod factor (NF)-independent symbiosis between legumes and rhizobia was first demonstrated in some Aeschynomene species that are nodulated by photosynthetic bradyrhizobia lacking the canonical nodABC genes. In this study, we revealed that a large diversity of non-photosynthetic bradyrhizobia, including B. elkanii, was also able to induce nodules on the NFindependent Aeschynomene species, A. indica. Using cytological analysis of the nodules and the nitrogenase enzyme activity as markers, a gradient in the symbiotic interaction between bradyrhizobial strains and A. indica could be distinguished. This ranged from strains that induced nodules that were only infected intercellularly to rhizobial strains that formed nodules in which the host cells were invaded intracellularly and that displayed a weak nitrogenase activity. In all nonphotosynthetic bradyrhizobia, the type III secretion system (T3SS) appears required to trigger nodule organogenesis. In contrast, genome sequence analysis revealed that apart from a few exceptions, like the Bradyrhizobium ORS285 strain, photosynthetic bradyrhizobia strains lack a T3SS. Furthermore, analysis of the symbiotic properties of an ORS285 T3SS mutant revealed that the T3SS could have a positive or negative role for the interaction with NF-dependent Aeschynomene species, but that it is dispensable for the interaction with all NF-independent Aeschynomene species tested. Taken together, these data indicate that two NF-independent symbiotic processes are possible between legumes and rhizobia: one dependent on a T3SS and one using a so far unknown mechanism
The evolutionary dynamics of ancient and recent polyploidy in the African semiaquatic species of the legume genus Aeschynomene
The legume genus Aeschynomene is notable in the ability of certain semiaquatic species to develop nitrogen-fixing stem nodules. These species are distributed in two clades. In the first clade, all the species are characterized by the use of a unique Nod-independent symbiotic process. In the second clade, the species use a Nod-dependent symbiotic process and some of them display a profuse stem nodulation as exemplified in the African Aeschynomene afraspera. To facilitate the molecular analysis of the symbiotic characteristics of such legumes, we took an integrated molecular and cytogenetic approach to track occurrences of polyploidy events and to analyze their impact on the evolution of the African species of Aeschynomene. Our results revealed two rounds of polyploidy: a paleopolyploid event predating the African group and two neopolyploid speciations, along with significant chromosomal variations. Hence, we found that A. afraspera (8x) has inherited the contrasted genomic properties and the stem-nodulation habit of its parental lineages (4x). This study reveals a comprehensive picture of African Aeschynomene diversification. It notably evidences a history that is distinct from the diploid Nod-independent clade, providing clues for the identification of the specific determinants of the Nod-dependent and Nod-independent symbiotic processes, and for comparative analysis of stem nodulation