8,214 research outputs found
The influence of Galactic aberration on precession parameters determined from VLBI observations
The influence of proper motions of sources due to Galactic aberration on
precession models based on VLBI data is determined. Comparisons of the linear
trends in the coordinates of the celestial pole obtained with and without
taking into account Galactic aberration indicate that this effect can reach 20
as per century, which is important for modern precession models. It is
also shown that correcting for Galactic aberration influences the derived
parameters of low-frequency nutation terms. It is therefore necessary to
correct for Galactic aberration in the reduction of modern astrometric
observations
Towards the electron EDM search: Theoretical study of HfF+
We report first ab initio relativistic correlation calculations of potential
curves for ten low-lying electronic states, effective electric field on the
electron and hyperfine constants for the ^3\Delta_1 state of cation of a heavy
transition metal fluoride, HfF^+, that is suggested to be used as the working
state in experiments to search for the electric dipole moment of the electron.
It is shown that HfF^+ has deeply bound ^1\Sigma^+ ground state, its
dissociation energy is D_e=6.4 eV. The ^3\Delta_1 state is obtained to be the
relatively long-lived first excited state lying about 0.2 eV higher. The
calculated effective electric field E_eff=W_d|\Omega| acting on an electron in
this state is 5.84*10^{24}Hz/(e*cm)Comment: 4 page
Thermal transformations of aluminium-aluminium oxide systems in nanosize layers
Aluminium film of more than 2 nm thick indicates, but less than 2 nm do not indicate characteristic absorption and reflection bands for aluminium in range ?=190...1100 nm. By spectrophotometric, gravimetric and microscopic methods it is stated that thickness, mass and absorption, reflection spectrum of aluminium films (d=2...200 nm) undergo considerable transformations as a result of heat treatment in an interval of temperatures 373...600 K during 1...140 min in atmospheric conditions. Kinetic curve of transformation degrees, change of thickness and weights of samples are shown to be satisfactorily described in the context of the logarithmic law. It is established that changes of absorption spectra, thickness and weights of aluminium films are connected with the formation of aluminium oxide on their surface
Slip-Squashing Factors as a Measure of Three-Dimensional Magnetic Reconnection
A general method for describing magnetic reconnection in arbitrary
three-dimensional magnetic configurations is proposed. The method is based on
the field-line mapping technique previously used only for the analysis of
magnetic structure at a given time. This technique is extended here so as to
analyze the evolution of magnetic structure. Such a generalization is made with
the help of new dimensionless quantities called "slip-squashing factors". Their
large values define the surfaces that border the reconnected or
to-be-reconnected magnetic flux tubes for a given period of time during the
magnetic evolution. The proposed method is universal, since it assumes only
that the time sequence of evolving magnetic field and the tangential boundary
flows are known. The application of the method is illustrated for simple
examples, one of which was considered previously by Hesse and coworkers in the
framework of the general magnetic reconnection theory. The examples help us to
compare these two approaches; they reveal also that, just as for magnetic null
points, hyperbolic and cusp minimum points of a magnetic field may serve as
favorable sites for magnetic reconnection. The new method admits a
straightforward numerical implementation and provides a powerful tool for the
diagnostics of magnetic reconnection in numerical models of solar-flare-like
phenomena in space and laboratory plasmas.Comment: 39 pages, 9 figures, corrected typos, to appear in ApJ, March 200
Electric dipole moment of the electron in YbF molecule
Ab initio calculation of the hyperfine, P-odd, and P,T-odd constants for the
YbF molecule was performed with the help of the recently developed technique,
which allows to take into account correlations and polarization in the
outercore region. The ground state electronic wave function of the YbF molecule
is found with the help of the Relativistic Effective Core Potential method
followed by the restoration of molecular four-component spinors in the core
region of ytterbium in the framework of a non-variational procedure. Core
polarization effects are included with the help of the atomic Many Body
Perturbation Theory for Yb atom. For the isotropic hyperfine constant A,
accuracy of our calculation is about 3% as compared to the experimental datum.
The dipole constant Ad (which is much smaller in magnitude), though better than
in all previous calculations, is still underestimated by almost 23%. Being
corrected within a semiempirical approach for a perturbation of 4f-shell in the
core of Yb due to the bond making, this error is reduced to 8%. Our value for
the effective electric field on the unpaired electron is 4.9 a.u.=2.5E+10 V/cm.Comment: 7 pages, REVTE
Calculation of T_ odd effects in $"" sup 205_TIF including electron correlation
A method and codes for two-step correlation calculation of heavy-atom
molecules have been developed, employing the generalized relativistic effective
core potential and relativistic coupled cluster (RCC) methods at the first
step, followed by nonvariational one-center restoration of proper
four-component spinors in the heavy cores. Electron correlation is included for
the first time in an ab initio calculation of the interaction of the permanent
P,T-odd proton electric dipole moment with the internal electromagnetic field
in a molecule. The calculation is performed for the ground state of TlF at the
experimental equilibrium, R_e=2.0844 A, and at R=2.1 A, with spin-orbit and
correlation effects included by RCC. Calculated results with single cluster
amplitudes only are in good agreement (3% and 1%) with recent
Dirac-Hartree-Fock (DHF) values of the magnetic parameter M; the larger
differences occurring between present and DHF volume parameter (X) values, as
well as between the two DHF calculations, are explained. Inclusion of electron
correlation by GRECP/RCC with single and double excitations has a major effect
on the P,T-odd parameters, decreasing M by 17% and X by 22%.Comment: 5 pages, REVTeX4 style Accepted for publication in Phys.Rev.Letter
Hyperon production in near threshold nucleon-nucleon collisions
We study the mechanism of the associated Lambda-kaon and Sigma-kaon
production in nucleon-nucleon collisions over an extended range of near
threshold beam energies within an effective Lagrangian model, to understand of
the new data on pp --> p Lambda K+ and pp --> p Sigma0 K+ reactions published
recently by the COSY-11 collaboration. In this theory, the hyperon production
proceeds via the excitation of N*(1650), N*(1710), and N*(1720) baryonic
resonances. Interplay of the relative contributions of various resonances to
the cross sections, is discussed as a function of the beam energy over a larger
near threshold energy domain. Predictions of our model are given for the total
cross sections of pp --> p Sigma+K0, pp --> n Sigma+K+, and pn --> n Lambda K+
reactions.Comment: 16 pages, 4 figures, one new table added and dicussions are updated,
version accepted for publication by Physical Review
- …