329 research outputs found

    One-electron states and interband optical absorption in single-wall carbon nanotubes

    Full text link
    Explicit expressions for the wave functions and dispersion equation for the band p - electrons in single-wall carbon nanotubes are obtained within the method of zero-range potentials. They are then used to investigate the absorption spectrum of polarized light caused by direct interband transitions in isolated nanotubes. It is shown that, at least, under the above approximations, the circular dichroism is absent in chiral nanotubes for the light wave propagating along the tube axis. The results obtained are compared with those calculated in a similar way for a graphite plane.Comment: 16 pages, 8 figures, 1 tabl

    End-to-end beam simulations for the new muon G-2 experiment at Fermilab

    Get PDF
    The aim of the new muon g-2 experiment at Fermilab is to measure the anomalous magnetic moment of the muon with an unprecedented uncertainty of 140 ppb. A beam of positive muons required for the experiment is created by pion decay. Detailed studies of the beam dynamics and spin polarization of the muons are important to predict systematic uncertainties in the experiment. In this paper, we present the results of beam simulations and spin tracking from the pion production target to the muon storage ring. The end-to-end beam simulations are developed in Bmad and include the processes of particle decay, collimation (with accurate representation of all apertures) and spin tracking

    Low-temperature far-infrared ellipsometry of convergent beam

    Full text link
    Development of an ellipsometry to the case of a coherent far infrared irradiation, low temperatures and small samples is described, including a decision of the direct and inverse problems of the convergent beam ellipsometry for an arbitrary wavelength, measurement technique and a compensating orientation of cryostat windows. Experimental results are presented: for a gold film and UBe13 single crystal at room temperature (lambda=119 um), temperature dependencies of the complex dielectric function of SrTiO3 (lambda=119, 84 and 28 um) and of YBa2Cu3O7-delta ceramic (lambda=119 um).Comment: 14 pages, 6 figure

    Verification and application of multi-source focus quantification

    No full text
    International audienceThe concept of the multi-source focus correlation method was presented in 2015 [1, 2]. A more accurate understanding of real on-product focus can be obtained by gathering information from different sectors: design, scanner short loop monitoring, scanner leveling, on-product focus and topography. This work will show that chip topography can be predicted from reticle density and perimeter density data, including experimental proof.Different pixel sizes are used to perform the correlation in-line with the minimum resolution, correlation length of CMP effects and the spot size of the scanner level sensor.Potential applications of the topography determination will be evaluated, includingoptimizing scanner leveling by ignoring non-critical parts of the field, and without the need for time-consuming offline topography measurements

    Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision

    Get PDF
    We report a measurement of the positive muon lifetime to a precision of 1.0 parts per million (ppm); it is the most precise particle lifetime ever measured. The experiment used a time-structured, low-energy muon beam and a segmented plastic scintillator array to record more than 2 x 10^{12} decays. Two different stopping target configurations were employed in independent data-taking periods. The combined results give tau_{mu^+}(MuLan) = 2196980.3(2.2) ps, more than 15 times as precise as any previous experiment. The muon lifetime gives the most precise value for the Fermi constant: G_F(MuLan) = 1.1663788 (7) x 10^-5 GeV^-2 (0.6 ppm). It is also used to extract the mu^-p singlet capture rate, which determines the proton's weak induced pseudoscalar coupling g_P.Comment: Accepted for publication in Phys. Rev. Let

    Improved Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant

    Full text link
    The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, tau_mu = 2.197013(24) us, is in excellent agreement with the previous world average. The new world average tau_mu = 2.197019(21) us determines the Fermi constant G_F = 1.166371(6) x 10^-5 GeV^-2 (5 ppm). Additionally, the precision measurement of the positive muon lifetime is needed to determine the nucleon pseudoscalar coupling g_P.Comment: As published version (PRL, July 2007

    Measurement of Muon Capture on the Proton to 1% Precision and Determination of the Pseudoscalar Coupling g_P

    Full text link
    The MuCap experiment at the Paul Scherrer Institute has measured the rate L_S of muon capture from the singlet state of the muonic hydrogen atom to a precision of 1%. A muon beam was stopped in a time projection chamber filled with 10-bar, ultra-pure hydrogen gas. Cylindrical wire chambers and a segmented scintillator barrel detected electrons from muon decay. L_S is determined from the difference between the mu- disappearance rate in hydrogen and the free muon decay rate. The result is based on the analysis of 1.2 10^10 mu- decays, from which we extract the capture rate L_S = (714.9 +- 5.4(stat) +- 5.1(syst)) s^-1 and derive the proton's pseudoscalar coupling g_P(q^2_0 = -0.88 m^2_mu) = 8.06 +- 0.55.Comment: Updated figure 1 and small changes in wording to match published versio

    Measurement of the Rate of Muon Capture in Hydrogen Gas and Determination of the Proton's Pseudoscalar Coupling gPg_P

    Full text link
    The rate of nuclear muon capture by the proton has been measured using a new experimental technique based on a time projection chamber operating in ultra-clean, deuterium-depleted hydrogen gas at 1 MPa pressure. The capture rate was obtained from the difference between the measured μ−\mu^- disappearance rate in hydrogen and the world average for the μ+\mu^+ decay rate. The target's low gas density of 1% compared to liquid hydrogen is key to avoiding uncertainties that arise from the formation of muonic molecules. The capture rate from the hyperfine singlet ground state of the μp\mu p atom is measured to be ΛS=725.0±17.4s−1\Lambda_S=725.0 \pm 17.4 s^{-1}, from which the induced pseudoscalar coupling of the nucleon, gP(q2=−0.88mμ2)=7.3±1.1g_P(q^2=-0.88 m_\mu^2)=7.3 \pm 1.1, is extracted. This result is consistent with theoretical predictions for gPg_P that are based on the approximate chiral symmetry of QCD.Comment: submitted to Phys.Rev.Let
    • …
    corecore