19 research outputs found

    MECHANISM-BASED INHIBITION OF BACTERIAL AND MITOCHONDRIAL TRYPTOPHANYL-TRNA SYNTHESASES IS POTENTIATED BY MG2+•ATP

    Get PDF
    Eukaryotes have distinct nuclear genes for tryptophanyl-tRNA synthetase (TrpRS) enzymes targeted by N-terminal sequence variations to the cytoplasm (Hc) and mitochondria (Hmt) that share only 14% sequence identity. Indolmycin, a natural tryptophan analog, competes with tryptophan for binding to tryptophanyl-tRNA synthetase (TrpRS) enzymes. Although bacterial and eukaryotic cytosolic TrpRSs have comparable affinities for tryptophan, KM ~2 μM, eukaryotic cytosolic TrpRS enzymes are able to evade inhibition by indolmycin. Tryptophan binding to Bacillus stearothermophilus (Bs) TrpRS is largely promoted by hydrophobic interactions and recognition of the indole nitrogen by the side chain of Asp 132. By contrast, HcTrpRS complements non polar interactions for tryptophan binding with electrostatic and hydrogen bonding interactions, which we show by modelling are inconsistent with indolmycin binding. Our crystallographic and inhibition kinetics data show the non-reactive analog indolmycin can recruit unique polar interactions to form an active-site metal coordination that lies off the normal mechanistic path, enhancing affinity to BsTrpRS and other prokaryotic TrpRS enzymes by 1500-fold over its tryptophan substrate. The Mg2+ ion in the inhibited complex forms significantly closer contacts with triphosphate oxygen atoms of ATP and three water molecules than occur in the catalytically-competent pre-transition state (preTS). Indolmycin binding also leads to weakened interactions between ATP and active-site lysine side-chains. Confirmation of our interpretation of structural consequences of indolmycin binding comes from a 1.82 Å crystal structure of an indolmycin-inhibited HmtTrpRS complex. This structure unequivocally demonstrates the use of similar determinants by mitochondrial and bacterial TrpRS enzymes to bind both ATP and indolmycin, with the mitochondrial enzyme forming similar ATP-enzyme, ATP-metal and indolmycin-enzyme interactions. Indolmycin binds HmtTrpRS ~700-times tighter than tryptophan and Mg2+•ATP leads to an ~80-fold enhancement in indolmycin binding affinity. The oxazolinone- Mg2+•ATP interaction contributes ~-2.2 kcal/mol to the Gibbs free energy of the fully-liganded indolmycin inhibited HmtTrpRS complex. Together, our complementary structural, kinetic and thermodynamic characterization of BsTrpRS and HmtTrpRS establish a shared mechanism for indolmycin inhibition of mitochondrial and prokaryotic TrpRS enzymes, which bind indolmycin 105-106-fold tighter than eukaryotic cytosolic homologs.Doctor of Philosoph

    Selective Inhibition of Bacterial Tryptophanyl-tRNA Synthetases by Indolmycin Is Mechanism-based

    Get PDF
    Indolmycin is a natural tryptophan analog that competes with tryptophan for binding to tryptophanyl-tRNA synthetase (TrpRS) enzymes. Bacterial and eukaryotic cytosolic TrpRSs have comparable affinities for tryptophan (Km ∼ 2 μm), and yet only bacterial TrpRSs are inhibited by indolmycin. Despite the similarity between these ligands, Bacillus stearothermophilus (Bs)TrpRS preferentially binds indolmycin ∼1500-fold more tightly than its tryptophan substrate. Kinetic characterization and crystallographic analysis of BsTrpRS allowed us to probe novel aspects of indolmycin inhibitory action. Previous work had revealed that long range coupling to residues within an allosteric region called the D1 switch of BsTrpRS positions the Mg2+ ion in a manner that allows it to assist in transition state stabilization. The Mg2+ ion in the inhibited complex forms significantly closer contacts with non-bridging oxygen atoms from each phosphate group of ATP and three water molecules than occur in the (presumably catalytically competent) pre-transition state (preTS) crystal structures. We propose that this altered coordination stabilizes a ground state Mg2+·ATP configuration, accounting for the high affinity inhibition of BsTrpRS by indolmycin. Conversely, both the ATP configuration and Mg2+ coordination in the human cytosolic (Hc)TrpRS preTS structure differ greatly from the BsTrpRS preTS structure. The effect of these differences is that catalysis occurs via a different transition state stabilization mechanism in HcTrpRS with a yet-to-be determined role for Mg2+. Modeling indolmycin into the tryptophan binding site points to steric hindrance and an inability to retain the interactions used for tryptophan substrate recognition as causes for the 1000-fold weaker indolmycin affinity to HcTrpRS

    Combining multi-mutant and modular thermodynamic cycles to measure energetic coupling networks in enzyme catalysis

    Get PDF
    We measured and cross-validated the energetics of networks in Bacillus stearothermophilus Tryptophanyl-tRNA synthetase (TrpRS) using both multi-mutant and modular thermodynamic cycles. Multi-dimensional combinatorial mutagenesis showed that four side chains from this “molecular switch” move coordinately with the active-site Mg2+ ion as the active site preorganizes to stabilize the transition state for amino acid activation. A modular thermodynamic cycle consisting of full-length TrpRS, its Urzyme, and the Urzyme plus each of the two domains deleted in the Urzyme gives similar energetics. These dynamic linkages, although unlikely to stabilize the transition-state directly, consign the active-site preorganization to domain motion, assuring coupled vectorial behavior

    An Ancestral Tryptophanyl-tRNA Synthetase Precursor Achieves High Catalytic Rate Enhancement without Ordered Ground-State Tertiary Structures

    Get PDF
    Urzymes-short, active core modules derived from enzyme superfamilies-prepared from the two aminoacyl-tRNA synthetase (aaRS) Classes contain only the modules shared by all related family members. They have been described as models for ancestral forms. Understanding them depends on inferences drawn from the crystal structures of the full-length enzymes. As aaRS Urzymes lack much of the mass of modern aaRS, retaining only a small portion of the hydrophobic cores of the full-length enzymes, it is desirable to characterize their structures. We report preliminary characterization of 15N tryptophanyl-tRNA synthetase Urzyme by heteronuclear single quantum coherence (HSQC) NMR spectroscopy supplemented by circular dichroism, thermal melting, and induced fluorescence of bound dye. The limited dispersion of 1H chemical shifts (0.5 ppm) is inconsistent with a narrow ensemble of well-packed structures in either free or substrate-bound forms, although the number of resonances from the bound state increases, indicating a modest, ligand-dependent gain in structure. Circular dichroism spectroscopy shows the presence of alpha helix and evidence of cold denaturation, and all ligation states induce Sypro Orange fluorescence at ambient temperatures. Although the term "molten globule" is difficult to define precisely, these characteristics are consistent with most such definitions. Active-site titration shows that a majority of molecules retain ~60% of the transition state stabilization free energy observed in modern synthetases. In contrast to the conventional view that enzymes require stable tertiary structures, we conclude that a highly flexible ground-state ensemble can nevertheless bind tightly to the transition state for amino acid activation

    Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins

    Get PDF
    Photoactivatable proteins are powerful tools for studying biological processes. Light-induced dimers are especially useful because they can be turned on and off with high spatial and temporal resolution in living systems, allowing for control of protein localization and activity. Here, we develop and apply methods for identifying mutations that improve the effectiveness of a light-induced dimer. The engineered switch is modular, can be used in most organisms, has more than 50-fold change in binding affinity upon light stimulation, and can be used to initiate signaling pathways in a specific region of a cell

    The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed

    Get PDF
    Abstract Background Because amino acid activation is rate-limiting for uncatalyzed protein synthesis, it is a key puzzle in understanding the origin of the genetic code. Two unrelated classes (I and II) of contemporary aminoacyl-tRNA synthetases (aaRS) now translate the code. Observing that codons for the most highly conserved, Class I catalytic peptides, when read in the reverse direction, are very nearly anticodons for Class II defining catalytic peptides, Rodin and Ohno proposed that the two superfamilies descended from opposite strands of the same ancestral gene. This unusual hypothesis languished for a decade, perhaps because it appeared to be unfalsifiable. Results The proposed sense/antisense alignment makes important predictions. Fragments that align in antiparallel orientations, and contain the respective active sites, should catalyze the same two reactions catalyzed by contemporary synthetases. Recent experiments confirmed that prediction. Invariant cores from both classes, called Urzymes after Ur = primitive, authentic, plus enzyme and representing ~20% of the contemporary structures, can be expressed and exhibit high, proportionate rate accelerations for both amino-acid activation and tRNA acylation. A major fraction (60%) of the catalytic rate acceleration by contemporary synthetases resides in segments that align sense/antisense. Bioinformatic evidence for sense/antisense ancestry extends to codons specifying the invariant secondary and tertiary structures outside the active sites of the two synthetase classes. Peptides from a designed, 46-residue gene constrained by Rosetta to encode Class I and II ATP binding sites with fully complementary sequences both accelerate amino acid activation by ATP ~400 fold. Conclusions Biochemical and bioinformatic results substantially enhance the posterior probability that ancestors of the two synthetase classes arose from opposite strands of the same ancestral gene. The remarkable acceleration by short peptides of the rate-limiting step in uncatalyzed protein synthesis, together with the synergy of synthetase Urzymes and their cognate tRNAs, introduce a new paradigm for the origin of protein catalysts, emphasize the potential relevance of an operational RNA code embedded in the tRNA acceptor stems, and challenge the RNA-World hypothesis. Reviewers This article was reviewed by Dr. Paul Schimmel (nominated by Laura Landweber), Dr. Eugene Koonin and Professor David Ardell

    Functional Class I and II Amino Acid-activating Enzymes Can Be Coded by Opposite Strands of the Same Gene

    Get PDF
    Aminoacyl-tRNA synthetases (aaRS) catalyze both chemical steps that translate the universal genetic code. Rodin and Ohno offered an explanation for the existence of two aaRS classes, observing that codons for the most highly conserved Class I active-site residues are anticodons for corresponding Class II active-site residues. They proposed that the two classes arose simultaneously, by translation of opposite strands from the same gene. We have characterized wild-type 46-residue peptides containing ATP-binding sites of Class I and II synthetases and those coded by a gene designed by Rosetta to encode the corresponding peptides on opposite strands. Catalysis by WT and designed peptides is saturable, and the designed peptides are sensitive to active-site residue mutation. All have comparable apparent second-order rate constants 2.9–7.0E-3 m−1 s−1 or ∼750,000–1,300,000 times the uncatalyzed rate. The activities of the two complementary peptides demonstrate that the unique information in a gene can have two functional interpretations, one from each complementary strand. The peptides contain phylogenetic signatures of longer, more sophisticated catalysts we call Urzymes and are short enough to bridge the gap between them and simpler uncoded peptides. Thus, they directly substantiate the sense/antisense coding ancestry of Class I and II aaRS. Furthermore, designed 46-mers achieve similar catalytic proficiency to wild-type 46-mers by significant increases in both kcat and Km values, supporting suggestions that the earliest peptide catalysts activated ATP for biosynthetic purposes

    The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed

    Get PDF
    Background Because amino acid activation is rate-limiting for uncatalyzed protein synthesis, it is a key puzzle in understanding the origin of the genetic code. Two unrelated classes (I and II) of contemporary aminoacyl-tRNA synthetases (aaRS) now translate the code. Observing that codons for the most highly conserved, Class I catalytic peptides, when read in the reverse direction, are very nearly anticodons for Class II defining catalytic peptides, Rodin and Ohno proposed that the two superfamilies descended from opposite strands of the same ancestral gene. This unusual hypothesis languished for a decade, perhaps because it appeared to be unfalsifiable. Results The proposed sense/antisense alignment makes important predictions. Fragments that align in antiparallel orientations, and contain the respective active sites, should catalyze the same two reactions catalyzed by contemporary synthetases. Recent experiments confirmed that prediction. Invariant cores from both classes, called Urzymes after Ur = primitive, authentic, plus enzyme and representing ~20% of the contemporary structures, can be expressed and exhibit high, proportionate rate accelerations for both amino-acid activation and tRNA acylation. A major fraction (60%) of the catalytic rate acceleration by contemporary synthetases resides in segments that align sense/antisense. Bioinformatic evidence for sense/antisense ancestry extends to codons specifying the invariant secondary and tertiary structures outside the active sites of the two synthetase classes. Peptides from a designed, 46-residue gene constrained by Rosetta to encode Class I and II ATP binding sites with fully complementary sequences both accelerate amino acid activation by ATP ~400 fold. Conclusions Biochemical and bioinformatic results substantially enhance the posterior probability that ancestors of the two synthetase classes arose from opposite strands of the same ancestral gene. The remarkable acceleration by short peptides of the rate-limiting step in uncatalyzed protein synthesis, together with the synergy of synthetase Urzymes and their cognate tRNAs, introduce a new paradigm for the origin of protein catalysts, emphasize the potential relevance of an operational RNA code embedded in the tRNA acceptor stems, and challenge the RNA-World hypothesis. Reviewers This article was reviewed by Dr. Paul Schimmel (nominated by Laura Landweber), Dr. Eugene Koonin and Professor David Ardell
    corecore