13 research outputs found

    Geopolymer Development by Powders of Metakaolin and Wastes in Thailand

    Get PDF
    Geopolymer has been developed as an alternative material to Portland cement. Geopolymer is based on the polymerization of alkaline activation and oxide of silicon and aluminium. These oxides can be found in many pozzolanic materials such as metakaolin and the wastes from industries and agricultures in Thailand, e.g., fly ash, bagasse ash and rice husk ash. Pozzolanic materials were selected as source materials for making geopolymers into 4 different types. Sodium hydroxide concentration of 10 Molar (10MNaOH) and sodium silicate (Na2SiO3) solutions were used as alkaline activators by the mass ratio of Na2SiO3/NaOH at 1.5. The mixtures were cast in 25×25×25 mm. cubes. After casting, the geopolymers were cured at 80āđC for 24 hrs. in an oven and then at room temperature for 7 days. The pozzolanic materials effects, the Si/Al molar ratio and the Na/Al molar ratio were studied and characterized. An X-ray fluorescence (XRF) was chosen to determine the percentages of silica and alumina in order to verify the proper ratio of the fly ash, Rice husk ash, Bagasse ash and Metakaolin.The study also included the impact on mechanical and physical properties such as compressive strength, water absorption, density and porosity

    Development of geopolymer mortar from metakaolin blended with agricultural and industrial wastes

    No full text
    Geopolymer is greener alternative cement produced from the reaction of pozzolans and strong alkali solutions. Generally, the cement industry is one of largest producers of CO2 that caused global warming. For geopolymer mortar usage, Portland cement is not utilized at all. In this research, geopolymer mortars were prepared by mixing fly ash with metakaolin and various wastes (bagasse ash and rice husk ash) varied as 80:20, 50:50 and 20:80, 15M NaOH, Na2SiO3 and sand. The influence of various parameters such as metakaolin to ashes ratios and pozzolans to alkali ratios on engineering properties of metakaolin blended wastes geopolymer mortar were studied. Compressive strength tests were carried out on 25 x 25 x 25 mm3 cube geopolymer mortar specimens at 7, 14, 21, 28 and 91 air curing days. Physical and chemical properties were also investigated at the same times. The test results revealed that the highest compressive strength was 80% fly ash - 20% metakaolin geopolymer mortar. When the curing times increases, the compressive strength of geopolymer mortar also increases. The mixing of fly ash and bagasse ash/rice husk ash presented lower compressive strength but higher water absorption and porosity. For FTIR results, the geopolymer chain such as the H-O-H, Si-OH and Al-O-Si were found. Moreover, the geopolymer mortar could easily plastered on the wall

    āļāļēāļĢāļžāļąāļ’āļ™āļēāļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āļĢāđŒāļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĢāļ‡āļŠāļđāļ‡āļ”āđ‰āļ§āļĒāđ€āļ–āđ‰āļēāļŠāļēāļ™āļ­āđ‰āļ­āļĒāļ§āđˆāļ­āļ‡āđ„āļ§āļŠāļđāļ‡ Development of High-Strength Geopolymers by High-Reactive Bagasse Ash

    No full text
    āļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āļĢāđŒāđ€āļ›āđ‡āļ™āļ§āļąāļŠāļ”āļļāļŠāļ™āļīāļ”āđƒāļŦāļĄāđˆāļ—āļĩāđˆāļĄāļĩāļŠāļĄāļšāļąāļ•āļīāļ„āļĨāđ‰āļēāļĒāļ„āļĨāļķāļ‡āļāļąāļšāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒ āļˆāļķāļ‡āļĄāļąāļāļ–āļđāļāļ™āļģāļĄāļēāđƒāļŠāđ‰āđƒāļ™āļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāļāļēāļĢāļāđˆāļ­āļŠāļĢāđ‰āļēāļ‡āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļĄāļĩāļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āļ­āļąāļ”āļŠāļđāļ‡ āđ‚āļ”āļĒāļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āļĢāđŒāļœāļĨāļīāļ•āļĄāļēāļˆāļēāļāļ§āļąāļŠāļ”āļļāļ­āļ°āļĨāļđāļĄāļīāđ‚āļ™āļ‹āļīāļĨāļīāđ€āļāļ•āļ—āļĩāđˆāđ€āļĢāļĩāļĒāļāļ§āđˆāļēāļ§āļąāļŠāļ”āļļāļ›āļ­āļ‹āđ‚āļ‹āļĨāļēāļ™āđ€āļŠāđˆāļ™ āđ€āļĄāļ•āļēāđ€āļ„āđ‚āļ­āļĨāļīāļ™ āđ€āļ–āđ‰āļēāļĨāļ­āļĒ āđ€āļ–āđ‰āļēāļŠāļēāļ™āļ­āđ‰āļ­āļĒ āđāļĨāļ°āđ€āļ–āđ‰āļēāđāļāļĨāļš āļœāļŠāļĄāļāļąāļšāļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļ­āļąāļĨāļ„āļēāđ„āļĨāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļ”āđˆāļēāļ‡āļŠāļđāļ‡āđ€āļžāļ·āđˆāļ­āđ€āļāļīāļ”āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āđ„āļĢāđ€āļ‹āļŠāļąāļ™ āđāļ•āđˆāđƒāļ™āļāļēāļĢāļ™āļģāđ€āļ­āļēāļ‚āļĩāđ‰āđ€āļ–āđ‰āļēāļˆāļēāļāļāļēāļĢāđ€āļāļĐāļ•āļĢ āļĄāļēāđƒāļŠāđ‰āļ™āļąāđ‰āļ™āļĄāļĩāļ‚āđ‰āļ­āļˆāļģāļāļąāļ”āļ­āļĒāļđāđˆāļ—āļĩāđˆāļ„āļ§āļēāļĄāļ§āđˆāļ­āļ‡āđ„āļ§āđƒāļ™āļāļēāļĢāļ—āļģāļ›āļāļīāļāļīāļĢāļīāļĒāļē āļŦāļēāļāļ§āļąāļŠāļ”āļļāļ›āļ­āļ‹āđ‚āļ‹āļĨāļēāļ™āļĄāļĩāļ„āļ§āļēāļĄāļ§āđˆāļ­āļ‡āđ„āļ§āđƒāļ™āļāļēāļĢāļ—āļģāļ›āļāļīāļāļīāļĢāļīāļĒāļēāļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āđ„āļĢāđ€āļ‹āļŠāļąāļ™āļ•āđˆāļģāļˆāļ°āļ—āļģāđƒāļŦāđ‰āļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āļ­āļąāļ”āļŠāđˆāļ§āļ‡āļ•āđ‰āļ™āļ‚āļ­āļ‡āļŠāļīāđ‰āļ™āļ‡āļēāļ™āļĄāļĩāļ„āđˆāļēāļ™āđ‰āļ­āļĒāđ€āļŠāđˆāļ™āđ€āļ”āļĩāļĒāļ§āļāļąāļ™ āļ”āļąāļ‡āļ™āļąāđ‰āļ™āđƒāļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļ—āļĩāđˆāļ—āļģāđƒāļŦāđ‰āđ€āļ–āđ‰āļēāļŠāļēāļ™āļ­āđ‰āļ­āļĒāļĄāļĩāļ„āļ§āļēāļĄāļ§āđˆāļ­āļ‡āđ„āļ§āļŠāļđāļ‡āļ•āđˆāļ­āļāļēāļĢāļ—āļģāļ›āļāļīāļāļīāļĢāļīāļĒāļēāđ‚āļ”āļĒāļāļēāļĢāļ™āļģāđ€āļ–āđ‰āļēāļŠāļēāļ™āļ­āđ‰āļ­āļĒāđ„āļ›āđāļŠāđˆāđƒāļ™āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒāđāļĨāļ°āđ€āļāļīāļ”āđ€āļ›āđ‡āļ™āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄ āđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒāļŠāļ™āļīāļ”āļ‹āļīāļĨāļīāļāļēāļŠāļđāļ‡ (Silica-rich (SR)-NaOH) āđƒāļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđƒāļŠāđ‰āļ§āļąāļŠāļ”āļļāļ›āļ­āļ‹āđ‚āļ‹āļĨāļēāļ™āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļĢāļ°āļŦāļ§āđˆāļēāļ‡āđ€āļĄāļ•āļēāđ€āļ„āđ‚āļ­āļĨāļīāļ™āļ•āđˆāļ­āđ€āļ–āđ‰āļēāļŠāļēāļ™āļ­āđ‰āļ­āļĒāļ—āļĩāđˆ 80:20 āđāļĨāļ°āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ›āļ­āļ‹āđ‚āļ‹āļĨāļēāļ™āļ•āđˆāļ­āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļ­āļąāļĨāļ„āļēāđ„āļĨāđ€āļ—āđˆāļēāļāļąāļš 1:1 āļ›āļĢāļīāļĄāļēāļ“āđ€āļ–āđ‰āļēāļŠāļēāļ™āļ­āđ‰āļ­āļĒāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™āļ—āļĩāđˆ 0, 20 āđāļĨāļ° 50 āđ€āļ›āļ­āļĢāđŒāđ€āļ‹āļ™āļ•āđŒ āļœāļŠāļĄāđ€āļ‚āđ‰āļēāļāļąāļšāļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™ 10 āđ‚āļĄāļĨāļēāļĢāđŒ āđ„āļ”āđ‰āđ€āļ›āđ‡āļ™āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒāļŠāļ™āļīāļ”āļ‹āļīāļĨāļīāļāļēāļŠāļđāļ‡ āļˆāļēāļāļ™āļąāđ‰āļ™āļ—āļ”āļŠāļ­āļšāļŠāļĄāļšāļąāļ•āļīāļ—āļēāļ‡āđ€āļ„āļĄāļĩ āđ„āļ”āđ‰āđāļāđˆ āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļŦāļĄāļđāđˆāļŸāļąāļ‡āļāđŒāļŠāļąāļ™āļ”āđ‰āļ§āļĒāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŸāļđāđ€āļĢāļĩāļĒāļ—āļĢāļēāļ™āļŠāļŸāļ­āļĢāđŒāļĄāļ­āļīāļ™āļŸāļĢāļēāđ€āļĢāļ”āļŠāđ€āļ›āļāđ‚āļ•āļĢāļĄāļīāđ€āļ•āļ­āļĢāđŒ āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ­āļ‡āļ„āđŒāļ›āļĢāļ°āļāļ­āļšāļ—āļēāļ‡āđ€āļ„āļĄāļĩāļ”āđ‰āļ§āļĒ āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļāļēāļĢāđ€āļĨāļĩāđ‰āļĒāļ§āđ€āļšāļ™āļ‚āļ­āļ‡āļĢāļąāļ‡āļŠāļĩāđ€āļ­āđ‡āļāļ‹āđŒ āđāļĨāļ°āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļĨāļ°āļĨāļēāļĒāļ‚āļ­āļ‡āļ”āđˆāļēāļ‡ āļˆāļēāļāļœāļĨāļāļēāļĢāļ—āļ”āļŠāļ­āļšāļžāļšāļ§āđˆāļēāļāļēāļĢāđƒāļŠāđ‰ SR-NaOH āļ—āļĩāđˆāļœāļŠāļĄāđ€āļ–āđ‰āļēāļŠāļēāļ™āļ­āđ‰āļ­āļĒ 50 āđ€āļ›āļ­āļĢāđŒāđ€āļ‹āļ™āļ•āđŒ āļˆāļ°āļĄāļĩāļ„āđˆāļēāļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āļ­āļąāļ”āļŠāļđāļ‡āļ—āļĩāđˆāļŠāļļāļ” āđ‚āļ”āļĒāļĄāļĩāļ„āđˆāļēāļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āļ­āļąāļ”āļŠāļđāļ‡āļāļ§āđˆāļēāļŠāļīāđ‰āļ™āļ‡āļēāļ™āļ—āļĩāđˆāđƒāļŠāđ‰āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒāđ€āļŠāļīāļ‡āļžāļēāļ“āļīāļŠāļĒāđŒāļĄāļēāļāļāļ§āđˆāļē 2 āđ€āļ—āđˆāļē āļ—āļĩāđˆāļ­āļēāļĒāļļāļšāđˆāļĄ 7 āļ§āļąāļ™āđāļĨāļ°āļĄāļēāļāļāļ§āđˆāļē 3.5 āđ€āļ—āđˆāļēāļ—āļĩāđˆāļ­āļēāļĒāļļāļšāđˆāļĄ 28 āļ§āļąāļ™Geopolymer is a new material whose properties are similar to cement. Therefore, it is often used in the construction industry due to its high compressive strength. Geopolymers are made from aluminosilicate materials called pozzolanic materials such as metakaolin, fly ash, bagasse ash and rice husk ash mixed with a high alkali solution to occur geopolymerization, however, the agricultural ashes have limited reactivity. Since the pozzolanic materials had low reactivity for geopolymerization, the early compressive strength of geopolymer was low as well. Therefore, this research aimed to prepare the high-reactive bagasse ash by soaking the ash in sodium hydroxide solution to transform into silica-rich sodium hydroxide (SR-NaOH). In this study, the ratio of metakaolin and bagasse ash was 80:20 and the ratio of solid to alkali liquid was 1:1. The quantity of bagasse ash for SR-NaOH was varied as 0, 20 and 50%, mixed with 10M NaOH. The chemical properties were characterized including the functional group analysis by FTIR, the chemical compositions by XRD and the alkalinity test.  From the results, it was found that the usage of SR-NaOH with 50 percent of bagasse ash presented the highest compressive strength which was 2 times at 7 day age and 3.5 times at 28 day age higher than that of commercial NaOH.Keywordsāļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āļĢāđŒāļŠāļ™āļīāļ”āđ€āļĄāļ•āļēāđ€āļ„āđ‚āļ­āļĨāļīāļ™; āđ€āļ–āđ‰āļēāļŠāļēāļ™āļ­āđ‰āļ­āļĒāļ§āđˆāļ­āļ‡āđ„āļ§āļŠāļđāļ‡; āļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĢāļ‡āļĢāļąāļšāđāļĢāļ‡; āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāļ‹āļīāļĨāļīāđ€āļāļ•; āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒāļŠāļ™āļīāļ”āļ‹āļīāļĨāļīāļāļēāļŠāļđāļ‡Metakaolin-based geopolymer; High-reactive bagasse ash; Compressive strength; Sodium silicate solution; Silica-rich sodium hydroxide,

    Effect of Thai Kaolin on properties of agricultural ash blended geopolymers

    No full text
    Geopolymer has been developed as an alternative material to Portland cement. It is based on the polymerization of alkali activators and oxides of silicon and aluminium from pozzolans. Pozzolans are materials mainly SiO 2 and/or Al2O3 which reacts with NaOH and Na2SiO3 to generate a three dimentional aluminosilicate structure. The clean and fine kaolin from south of Thailand transforms into metakaolin at 550-600 C, as determined by DTA. In this research, kaolin was heated at 600 C, 700 C and 800 C for 2 and 6 h to optimize its transformation into metakaolin as pozzolans for geopolymers preparation. Additionally, the as-received kaolin was exploited also as a pozzolan for geopolymers in order to reduce heat energy consumption. However, it was found that kaolin alone did not display sufficient pozzolanic behavior to form geopolymer at 7 days of age unless specimens were slightly warm cured. Therefore, it was blended with more active pozzolans such as bagasse ash and rice husk ash. Finally, the results of compressive strength and microstructures were investigated and discussed. ÂĐ 2013 Published by Elsevier Ltd

    Potassium alkali concentration and heat treatment affected metakaolin-based geopolymer

    No full text
    Geopolymers prepared using KOH and K2SiO3 alkali solution instead of the more common NaOH and Na2SiO3 are reported. The influence of KOH concentration, curing temperature and heat treatment on the properties of metakaolin-based geopolymers were studied. The KOH concentrations were varied at 6, 8, 10, 20, 30 and 40 M, the K2SiO3/KOH ratios used were 1 and 1.5 and curing temperatures of 40 \ub0C and 60 \ub0C for 24 h were applied. Results showed that geopolymer with 10 M KOH, cured at 40 \ub0C, 24 h and heat treated at 550 \ub0C gave the highest compressive strength at 28 days. The heat treatment process caused the porosity of geopolymer increased because water was eliminated from the geopolymer structure by the applied heat, therefore, the density decreased whereas the water absorption and the porosity of geopolymer specimens increased. The microstructure of heat-treated specimens showed more mature geopolymer matrix than that of non heat-treated ones leading to higher compressive strength in the former geopolymers and had ceramic-like property

    Development of Thai lignite fly ash and metakaolin for pervious geopolymer concrete

    No full text
    The study was to use Thai lignite fly ash and metakaolin to produce geopolymer paste as binder material in pervious concrete. The proper ratio of fly ash to metakaolin were varied as 100:0, 70:30, and 50:50. Alkali solution to pozzolan (L/P) ratios viz., 0.5, 0.6 and 0.8 by weight were prepared. The mechanical and characterization of pervious geopolymer concrete (PGC) were carried out. The results presented that the particle of fly ash was sphere with smooth surface, while metakaolin was partly agglomerated and irregular shaped. The increase of fly ash in the ratio of fly ash to metakaolin affected the lower requirement of volume of alkali solution. The compressive strength and of pervious geopolymer concrete at 28 days were 3.7-5.4 MPa. The void ratio and water permeability were 28.5-30.7% and 1.9-2.1 cm/sec, respectively. Therefore, geopolymer paste from fly ash and metakaolin could be used for pervious concrete with satisfied properties according to standard of ACI 522R-10
    corecore