137 research outputs found

    IR ion spectroscopy in a combined approach with MS/MS and IM-MS to discriminate epimeric anthocyanin glycosides (cyanidin 3-O-glucoside and -galactoside)

    Get PDF
    Anthocyanins are widespread in plants and flowers, being responsible for their different colouring. Two representative members of this family have been selected, cyanidin 3-O-β-glucopyranoside and 3-O-β-galactopyranoside, and probed by mass spectrometry based methods, testing their performance in discriminating between the two epimers. The native anthocyanins, delivered into the gas phase by electrospray ionization, display a comparable drift time in ion mobility mass spectrometry (IM-MS) and a common fragment, corresponding to loss of the sugar moiety, in their collision induced dissociation (CID) pattern. However, the IR multiple photon dissociation (IRMPD) spectra in the fingerprint range show a feature particularly evident in the case of the glucoside. This signature is used to identify the presence of cyanidin 3-O-β-glucopyranoside in a natural extract of pomegranate. In an effort to increase any differentiation between the two epimers, aluminum complexes were prepared and sampled for elemental composition by FT-ICR-MS. CID experiments now display an extensive fragmentation pattern, showing few product ions peculiar to each species. More noteworthy is the IRMPD behavior in the OH stretching range showing significant differences in the spectra of the two epimers. DFT calculations allow to interpret the observed distinct bands due to a varied network of hydrogen bonding and relative conformer stability

    Some things old, new and borrowed: Delivery of dabrafenib and vemurafenib to melanoma cells via self-assembled nanomicelles based on an amphiphilic dendrimer

    Get PDF
    Two clinically approved anticancer drugs targeting BRAF in melanoma patients - dabrafenib (DAB) and vemurafenib (VEM) - have been successfully encapsulated into nanomicelles formed upon self-assembly of an amphiphilic dendrimer AD based on two C18 aliphatic chains and a G2 PAMAM head. The process resulted in the formation of well-defined (∼10 nm) core-shell nanomicelles (NMs) with excellent encapsulation efficiency (∼70% for DAB and ∼60% for VEM) and good drug loading capacity (∼27% and ∼24% for DAB and VEM, respectively). Dynamic light scattering (DLS), transmission electron microscopy (TEM), small-angle x-ray scattering (SAXS), nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC), and molecular simulation (MS) experiments were used, respectively, to determine the size and structure of the empty and drug-loaded nanomicelles (DLNMs), along with the interactions between the NMs and their cargoes. The in vitro release data revealed profiles governed by Fickian diffusion; moreover, for both anticancer molecules, an acidic environment (pH = 5.0) facilitated drug release with respect to physiological pH conditions (pH = 7.4). Finally, both DAB- and VEM-loaded NMs elicited enhanced response with respect to free drug treatments in 4 different melanoma cell lines

    Drag on particles in a nematic suspension by a moving nematic-isotropic interface

    Get PDF
    We report the first clear demonstration of drag on colloidal particles by a moving nematic-isotropic interface. The balance of forces explains our observation of periodic, strip-like structures that are produced by the movement of these particles

    An ionizable supramolecular dendrimer nanosystem for effective siRNA delivery with a favorable safety profile

    Get PDF
    Gene therapy using small interfering RNA (siRNA) is emerging as a novel therapeutic approach to treat various diseases. However, safe and efficient siRNA delivery still constitutes the major obstacle for clinical implementation of siRNA therapeutics. Here we report an ionizable supramolecular dendrimer vector, formed via self-assembly of a small amphiphilic dendrimer, as an effective siRNA delivery system with a favorable safety profile. By virtue of the ionizable tertiary amine terminals, the supramolecular dendrimer has a low positively charged surface potential and no notable cytotoxicity at physiological pH. Nonetheless, this ionizable feature imparted sufficient surface charge to the supramolecular dendrimer to enable formation of a stable complex with siRNA via electrostatic interactions. The resulting siRNA/dendrimer delivery system had a surface charge that was neither neutral, thus avoiding aggregation, nor too high, thus avoiding cytotoxicity, but was sufficient for favorable cellular uptake and endosomal release of the siRNA. When tested in different cancer cell lines and patient-derived cancer organoids, this dendrimer-mediated siRNA delivery system effectively silenced the oncogenes Myc and Akt2 with a potent antiproliferative effect, outperforming the gold standard vector, Lipofectamine 2000. Therefore, this ionizable supramolecular dendrimer represents a promising vector for siRNA delivery. The concept of supramolecular dendrimer nanovectors via self-assembly is new, yet easy to implement in practice, offering a new perspective for supramolecular chemistry in biomedical applications. [Figure not available: see fulltext.

    The structure and selectivity of the SR protein SRSF2 RRM domain with RNA

    Get PDF
    SRSF2 is a prototypical SR protein which plays important roles in the alternative splicing of pre-mRNA. It has been shown to be involved in regulatory pathways for maintaining genomic stability and play important roles in regulating key receptors in the heart. We report here the solution structure of the RNA recognition motifs (RRM) domain of free human SRSF2 (residues 9–101). Compared with other members of the SR protein family, SRSF2 structure has a longer L3 loop region. The conserved aromatic residue in the RNP2 motif is absent in SRSF2. Calorimetric titration shows that the RNA sequence 5′AGCAGAGUA3′ binds SRSF2 with a Kd of 61 ± 1 nM and a 1:1 stoichiometry. NMR and mutagenesis experiments reveal that for SFSF2, the canonical β1 and β3 interactions are themselves not sufficient for effective RNA binding; the additional loop L3 is crucial for RNA complex formation. A comparison is made between the structures of SRSF2–RNA complex with other known RNA complexes of SR proteins. We conclude that interactions involving the L3 loop, N- and C-termini of the RRM domain are collectively important for determining selectivity between the protein and RNA

    Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1

    Get PDF
    The REF/ALY mRNA export adaptor binds TAP/NXF1 via an arginine-rich region, which overlaps with its RNA-binding domain. When TAP binds a REF:RNA complex, it triggers transfer of the RNA from REF to TAP. Here, we have examined the effects of arginine methylation on the activities of the REF protein in mRNA export. We have mapped the arginine methylation sites of REF using mass spectrometry and find that several arginines within the TAP and RNA binding domains are methylated in vivo. However, arginine methylation has no effect on the REF:TAP interaction. Instead, arginine methylation reduces the RNA-binding activity of REF in vitro and in vivo. The reduced RNA-binding activity of REF in its methylated state is essential for efficient displacement of RNA from REF by TAP in vivo. Therefore, arginine methylation fine-tunes the RNA-binding activity of REF such that the RNA–protein interaction can be readily disrupted by export factors further down the pathway

    TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export

    Get PDF
    The metazoan TREX complex is recruited to mRNA during nuclear RNA processing and functions in exporting mRNA to the cytoplasm. Nxf1 is an mRNA export receptor, which binds processed mRNA and transports it through the nuclear pore complex. At present, the relationship between TREX and Nxf1 is not understood. Here we show that Nxf1 uses an intramolecular interaction to inhibit its own RNA-binding activity. When the TREX subunits Aly and Thoc5 make contact with Nxf1, Nxf1 is driven into an open conformation, exposing its RNA-binding domain, allowing RNA binding. Moreover, the combined knockdown of Aly and Thoc5 markedly reduces the amount of Nxf1 bound to mRNA in vivo and also causes a severe mRNA export block. Together, our data indicate that TREX provides a license for mRNA export by driving Nxf1 into a conformation capable of binding mRNA

    Angiogenesis

    Get PDF
    APJ has been extensively described in the pathophysiology of angiogenesis and cell proliferation. The prognostic value of APJ overexpression in many diseases is now established. This study aimed to design a PET radiotracer that specifically binds to APJ. Apelin-F13A-NODAGA (AP747) was synthesized and radiolabeled with gallium-68 ([Ga]Ga-AP747). Radiolabeling purity was excellent (> 95%) and stable up to 2 h. Affinity constant of [Ga]Ga-AP747 was measured on APJ-overexpressing colon adenocarcinoma cells and was in nanomolar range. Specificity of [Ga]Ga-AP747 for APJ was evaluated in vitro by autoradiography and in vivo by small animal PET/CT in both colon adenocarcinoma mouse model and Matrigel plug mouse model. Dynamic of [Ga]Ga-AP747 PET/CT biodistributions was realized on healthy mice and pigs for two hours, and quantification of signal in organs showed a suitable pharmacokinetic profile for PET imaging, largely excreted by urinary route. Matrigel mice and hindlimb ischemic mice were submitted to a 21-day longitudinal follow-up with [Ga]Ga-AP747 and [Ga]Ga-RGD small animal PET/CT. [Ga]Ga-AP747 PET signal in Matrigel was significantly more intense than that of [Ga]Ga-RGD. Revascularization of the ischemic hind limb was followed by LASER Doppler. In the hindlimb, [Ga]Ga-AP747 PET signal was more than twice higher than that of [Ga]Ga-RGD on day 7, and significantly superior over the 21-day follow-up. A significant, positive correlation was found between the [Ga]Ga-AP747 PET signal on day 7 and late hindlimb perfusion on day 21. We developed a new PET radiotracer that specifically binds to APJ, [Ga]Ga-AP747 that showed more efficient imaging properties than the most clinically advanced tracer of angiogenesis, [Ga]Ga-RGD.France Life Imagin

    Site Specific Modification of Adeno-Associated Virus Enables Both Fluorescent Imaging of Viral Particles and Characterization of the Capsid Interactome

    Get PDF
    Adeno-associated viruses (AAVs) are attractive gene therapy vectors due to their low toxicity, high stability, and rare integration into the host genome. Expressing ligands on the viral capsid can re-target AAVs to new cell types, but limited sites have been identified on the capsid that tolerate a peptide insertion. Here, we incorporated a site-specific tetracysteine sequence into the AAV serotype 9 (AAV9) capsid, to permit labelling of viral particles with either a fluorescent dye or biotin. We demonstrate that fluorescently labelled particles are detectable in vitro, and explore the utility of the method in vivo in mice with time-lapse imaging. We exploit the biotinylated viral particles to generate two distinct AAV interactomes, and identify several functional classes of proteins that are highly represented: actin/cytoskeletal protein binding, RNA binding, RNA splicing/processing, chromatin modifying, intracellular trafficking and RNA transport proteins. To examine the biological relevance of the capsid interactome, we modulated the expression of two proteins from the interactomes prior to AAV transduction. Blocking integrin αVβ6 receptor function reduced AAV9 transduction, while reducing histone deacetylase 4 (HDAC4) expression enhanced AAV transduction. Our method demonstrates a strategy for inserting motifs into the AAV capsid without compromising viral titer or infectivity

    Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors

    Get PDF
    Bioimaging plays an important role in cancer diagnosis and treatment. However, imaging sensitivity and specificity still constitute key challenges. Nanotechnology-based imaging is particularly promising for overcoming these limitations because nanosized imaging agents can specifically home in on tumors via the "enhanced permeation and retention" (EPR) effect, thus resulting in enhanced imaging sensitivity and specificity. Here, we report an original nanosystem for positron emission tomography (PET) imaging based on an amphiphilic dendrimer, which bears multiple PET reporting units at the terminals. This dendrimer is able to self-assemble into small and uniform nanomicelles, which accumulate in tumors for effective PET imaging. Benefiting from the combined dendrimeric multivalence and EPR-mediated passive tumor targeting, this nanosystem demonstrates superior imaging sensitivity and specificity, with up to 14-fold increased PET signal ratios compared with the clinical gold reference 2-fluorodeoxyglucose ([18F]FDG). Most importantly, this dendrimer system can detect imaging-refractory low-glucose-uptake tumors that are otherwise undetectable using [18F]FDG. In addition, it is endowed with an excellent safety profile and favorable pharmacokinetics for PET imaging. Consequently, this dendrimer nanosystem constitutes an effective and promising approach for cancer imaging. Our study also demonstrates that nanotechnology based on self-assembling dendrimers provides a fresh perspective for biomedical imaging and cancer diagnosis
    corecore