48 research outputs found

    Methane and ammonia in the near-infrared spectra of late-T dwarfs

    Get PDF
    Analysis of T dwarfs using model atmospheres has been hampered by the absence of reliable line lists for methane and ammonia. Newly computed high-temperature line lists for both of these important molecules are now available, so it is timely to investigate the appearance of the various absorption features in T dwarfs in order to better understand their atmospheres and validate the new line lists. We present high-quality R ∼ 5000 Gemini/NIFS 1.0–2.4 μm spectra of the T8 standard 2MASS 0415−0935 and the T9 standard UGPS 0722−0540. We use these spectra to identify numerous methane and ammonia features not previously seen and we discuss the implications for our understanding of T dwarf atmospheres. Among our results, we find that ammonia is the dominant opacity source between ∼1.233–1.266 μm in UGPS 0722−0540, and we tentatively identify several absorption features in this wavelength range in the T9's spectrum which may be due entirely to ammonia opacity. Our results also suggest that water rather than methane is the dominant opacity source in the red half of the J band of the T8 dwarf. Water appears to be the main absorber in this wavelength region in the T9 dwarf until ∼1.31 μm, when methane starts to dominate.Peer reviewe

    NPARSEC : NTT Parallaxes of Southern Extremely Cool objects. Goals, targets, procedures and first results

    Get PDF
    The discovery and subsequent detailed study of T dwarfs have provided many surprises and pushed the physics and modelling of cool atmospheres in unpredicted directions. Distance is a critical parameter for studies of these objects to determine intrinsic luminosities, test binarity and measure their motion in the Galaxy. We describe a new observational programme to determine distances across the full range of T-dwarf subtypes using the New Technology Telescope (NTT)/SOFI telescope/instrument combination. We present preliminary results for ten objects, five of which represent new distances.Peer reviewe

    Finding Faint Intermediate-mass Black Holes in the Radio Band

    Full text link
    We discuss the prospects for detecting faint intermediate-mass black holes, such as those predicted to exist in the cores of globular clusters and dwarf spheroidal galaxies. We briefly summarize the difficulties of stellar dynamical searches, then show that recently discovered relations between black hole mass, X-ray luminosity and radio luminosity imply that in most cases, these black holes should be more easily detected in the radio than in the X-rays. Finally, we show upper limits from some radio observations of globular clusters, and discuss the possibility that the radio source in the core of the Ursa Minor dwarf spheroidal galaxy might be a ∼10,000−100,000M⊙\sim 10,000-100,000 M_\odot black hole.Comment: 10 pages, no figures, to appear in From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales, ed. T. J. Maccarone, R. P. Fender, and L. C. Ho (Dordrecht: Kluwer

    76 T dwarfs from the UKIDSS LAS : benchmarks, kinematics and an updated space density

    Get PDF
    We report the discovery of 76 new T dwarfs from the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). Near-infrared broad- and narrow-band photometry and spectroscopy are presented for the new objects, along with Wide-field Infrared Survey Explorer (WISE) and warm-Spitzer photometry. Proper motions for 128 UKIDSS T dwarfs are presented from a new two epoch LAS proper motion catalogue. We use these motions to identify two new benchmark systems: LHS 6176AB, a T8p+M4 pair and HD 118865AB, a T5.5+F8 pair. Using age constraints from the primaries and evolutionary models to constrain the radii, we have estimated their physical properties from their bolometric luminosity. We compare the colours and properties of known benchmark T dwarfs to the latest model atmospheres and draw two principal conclusions. First, it appears that the H - [4.5] and J - W2 colours are more sensitive to metallicity than has previously been recognized, such that differences in metallicity may dominate over differences in T-eff when considering relative properties of cool objects using these colours. Secondly, the previously noted apparent dominance of young objects in the late-T dwarf sample is no longer apparent when using the new model grids and the expanded sample of late-T dwarfs and benchmarks. This is supported by the apparently similar distribution of late-T dwarfs and earlier type T dwarfs on reduced proper motion diagrams that we present. Finally, we present updated space densities for the late-T dwarfs, and compare our values to simulation predictions and those from WISE.Peer reviewe

    The Theory of Brown Dwarfs and Extrasolar Giant Planets

    Full text link
    Straddling the traditional realms of the planets and the stars, objects below the edge of the main sequence have such unique properties, and are being discovered in such quantities, that one can rightly claim that a new field at the interface of planetary science and and astronomy is being born. In this review, we explore the essential elements of the theory of brown dwarfs and giant planets, as well as of the new spectroscopic classes L and T. To this end, we describe their evolution, spectra, atmospheric compositions, chemistry, physics, and nuclear phases and explain the basic systematics of substellar-mass objects across three orders of magnitude in both mass and age and a factor of 30 in effective temperature. Moreover, we discuss the distinctive features of those extrasolar giant planets that are irradiated by a central primary, in particular their reflection spectra, albedos, and transits. Aspects of the latest theory of Jupiter and Saturn are also presented. Throughout, we highlight the effects of condensates, clouds, molecular abundances, and molecular/atomic opacities in brown dwarf and giant planet atmospheres and summarize the resulting spectral diagnostics. Where possible, the theory is put in its current observational context.Comment: 67 pages (including 36 figures), RMP RevTeX LaTeX, accepted for publication in the Reviews of Modern Physics. 30 figures are color. Most of the figures are in GIF format to reduce the overall size. The full version with figures can also be found at: http://jupiter.as.arizona.edu/~burrows/papers/rm

    Cluster Difference Imaging Photometric Survey. II. TOI 837: A Young Validated Planet in IC 2602

    Get PDF
    We report the discovery of TOI 837b and its validation as a transiting planet. We characterize the system using data from the NASA Transiting Exoplanet Survey Satellite mission, the ESA Gaia mission, ground-based photometry from El Sauce and ASTEP400, and spectroscopy from CHIRON, FEROS, and Veloce. We find that TOI 837 is a T = 9.9 mag G0/F9 dwarf in the southern open cluster IC 2602. The star and planet are therefore million years old. Combining the transit photometry with a prior on the stellar parameters derived from the cluster color-magnitude diagram, we find that the planet has an orbital period of and is slightly smaller than Jupiter. From radial velocity monitoring, we limit to less than 1.20 M Jup (3σ). The transits either graze or nearly graze the stellar limb. Grazing transits are a cause for concern, as they are often indicative of astrophysical false-positive scenarios. Our follow-up data show that such scenarios are unlikely. Our combined multicolor photometry, high-resolution imaging, and radial velocities rule out hierarchical eclipsing binary scenarios. Background eclipsing binary scenarios, though limited by speckle imaging, remain a 0.2% possibility. TOI 837b is therefore a validated adolescent exoplanet. The planetary nature of the system can be confirmed or refuted through observations of the stellar obliquity and the planetary mass. Such observations may also improve our understanding of how the physical and orbital properties of exoplanets change in time

    TESS Spots a Compact System of Super-Earths around the Naked-eye Star HR 858

    Get PDF
    Transiting Exoplanet Survey Satellite (TESS) observations have revealed a compact multiplanet system around the sixth-magnitude star HR 858 (TIC 178155732, TOI 396), located 32 pc away. Three planets, each about twice the size of Earth, transit this slightly evolved, late F-type star, which is also a member of a visual binary. Two of the planets may be in mean motion resonance. We analyze the TESS observations, using novel methods to model and remove instrumental systematic errors, and combine these data with follow-up observations taken from a suite of ground-based telescopes to characterize the planetary system. The HR 858 planets are enticing targets for precise radial velocity observations, secondary eclipse spectroscopy, and measurements of the Rossiter-McLaughlin effect

    HD 183579b: A warm sub-Neptune transiting a solar twin detected by TESS

    Get PDF
    We report the discovery and characterization of a transiting warm sub-Neptune planet around the nearby bright (V = 8.75 mag, K = 7.15 mag) solar twin HD 183579, delivered by the Transiting Exoplanet Survey Satellite (TESS). The host star is located 56.8 ± 0.1 pc away with a radius of R∗ = 0.97 ± 0.02 R and a mass of M∗ = 1.03 ± 0.05 M. We confirm the planetary nature by combining space and ground-based photometry, spectroscopy, and imaging. We find that HD 183579b (TOI-1055b) has a radius of Rp = 3.53 ± 0.13 R on a 17.47 d orbit with a mass of Mp = 11.2 ± 5.4 M (3σ mass upper limit of 27.4 M). HD 183579b is the fifth brightest known sub-Neptune planet system in the sky, making it an excellent target for future studies of the interior structure and atmospheric properties. By performing a line-by-line differential analysis using the high-resolution and signal-to-noise ratio HARPS spectra, we find that HD 183579 joins the typical solar twin sample, without a statistically significant refractory element depletion

    TOI-677b: A Warm Jupiter (P = 11.2 days) on an Eccentric Orbit Transiting a Late F-type Star

    Get PDF
    We report the discovery of TOI-677 b, first identified as a candidate in light curves obtained within Sectors 9 and 10 of the Transiting Exoplanet Survey Satellite (TESS) mission and confirmed with radial velocities. TOI-677 b has a mass of The host star has a mass of a radius of Gyr and solar metallicity, properties consistent with a main-sequence late-F star with K. We find evidence in the radial velocity measurements of a secondary long-term signal, which could be due to an outer companion. The TOI-677 b system is a well-suited target for Rossiter-Mclaughlin observations that can constrain migration mechanisms of close-in giant planets
    corecore