11 research outputs found

    DataSheet_1_Global research status and frontiers on microvascular invasion of hepatocellular carcinoma: A bibliometric and visualized analysis.zip

    No full text
    IntroductionOver the past decade, several studies on the microvascular invasion (MVI) of hepatocellular carcinoma (HCC) have been published. However, they have not quantitatively analyzed the remarkable impact of MVI. Therefore, a more comprehensive understanding of the field is now needed. This study aims to analyze the evolution of HCC-MVI research and to systematically evaluate the scientific outputs using bibliometric citation analysis.MethodsA systematic search was conducted on the Web of Science Core Collection on 2 May 2022 to retrieve studies on HCC-MVI published between 2013 and 2022. Then, a bibliometric analysis of the publications was performed using CiteSpace, VOSviewer, and other visualization tools.ResultsA total of 1,208 articles on HCC MVI were identified. Of these, China (n = 518) was the most prolific country, and Fudan University (n = 90) was the most notable institution. Furthermore, we observed that Lau Wan Yee participated in most studies (n = 26), and Frontiers in Oncology (IF2020:6.24) published the highest number of documents (n = 49) on this subject, with 138 publications. The paper “Bray F, 2018, CA-CANCER J CLIN, V68, P394” has the highest number of co-cited references, with 119 citations. In addition, the top three keywords were “survival”, “recurrence”, and “microvascular invasion”. Moreover, the research hot spots and frontiers of HCC-MVI for the last 3 years included imaging characteristics and transarterial chemoembolization (TACE) therapy studies.ConclusionsThis study comprehensively summarized the most significant HCC-MVI documents from past literature and highlighted key contributions made to the advancement of this subject and the advancement of this field over the past decade. The trend of MVI research will gradually shift from risk factors and prognosis studies to imaging characteristics and TACE therapy studies.</p

    Functional Classifications from GO, Focused on Plant-Specific Categories Outlined by Gramene

    No full text
    <p>(A) compares predicted genes from <i>Arabidopsis</i> and Beijing <i>indica</i>. (B) compares predicted genes from Beijing <i>indica</i> with nr-KOME cDNAs. We ignore categories with less than 0.1% of the genes.</p

    Graphical View of All Duplicated Segments

    No full text
    <p>The 12 chromosomes are depicted along the perimeter of a circle, not in order but slightly rearranged so as to untangle the connections between segments. Overall, we cover 65.7% of the genome.</p

    Distribution of Substitutions per Silent Site (Ks) for Homolog Pairs in Segmental, Tandem, and Background Duplications

    No full text
    <p>In (A), contributions from the recent segmental duplication on Chromosomes 11 and 12 are colored in red. The tandem duplication data are shown on two different scales, one to emphasize the magnitude of the zero peak (B) and another to highlight the exponential decay (C). Background duplications are shown in (D).</p

    A Region on Beijing <i>indica</i> Chromosome 2, Showing Three Gene Islands Separated by Two Intergenic Repeat Clusters of High 20-mer Copy Number

    No full text
    <p>Transposable elements identified by RepeatMasker are classified based on the nomenclature of <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0030038#st002" target="_blank">Table S2</a>. Depicted genes include both nr-KOME cDNAs and FGENESH predictions.</p

    A View of All Duplications Found on Rice Chromosome 2

    No full text
    <p>In contrast to <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0030038#pbio-0030038-g006" target="_blank">Figure 6</a>, where we featured those cDNAs with one and only one TBlastN homolog, here we show all detectable TBlastN homologs, up to a maximum of 1,000 per cDNA.</p

    Basic Algorithm for Construction of Scaffolds and Super-Scaffolds

    No full text
    <p>We start with the smallest plasmids and progressively work our way up to the largest BACs. Only links with two or more pieces of supporting evidence are made. These include 34,190 “anchor points” constructed from a comparison of <i>indica</i> and <i>japonica</i>. Each anchor is a series of high-quality BlastN hits (typically 98.5% identity) put together by a dynamic programming algorithm that allows for small gaps to accommodate the polymorphic intergenic repeats. Typical anchor points contain four BlastN hits at a total size of 9 kb (including gaps). Notice how in the beginning <i>indica</i> and <i>japonica</i> are processed separately, to construct what we called scaffolds. Only at the end do we use data from one subspecies to link scaffolds in the other subspecies, and these are what we called super-scaffolds.</p

    A Sample Bioverse-Predicted Interaction Network for Defense Proteins and Their Direct Neighbors

    No full text
    <p>The symbols are colored to indicate some of the major GO categories under “molecular function.” We draw a cross over the symbol for an NH gene. Rectangles indicate proteins that are manually classified as being R-genes. They appear on genes that are not colored as defense, because some genes have multiple functions, not because of an annotation error. The white circles with green outline are unannotated genes that might also belong to this network, at a lower confidence.</p

    Overlapping FGENESH Predictions in All Three Rice Assemblies

    No full text
    <p>Two predictions are shared when 50% of their coding regions can be aligned. Because of imprecision in the predictions and overlap criteria, we get slightly different numbers for each assembly, and these are encoded through multiple color-coded numbers in the Venn diagram. EST confirmation requires 100 bp of exact match. Unlike the genes, we do not bother to show a different number for each assembly, because they are very similar.</p

    Ka/Ks Distribution for Homolog Pairs

    No full text
    <p>Ka and Ks are the fraction of the available nonsynonymous and synonymous sites that are changed in the homolog pairs. Ka/Ks > 1 is an indicator of positive selection. Shown is the Ka/Ks distribution for segmental duplications (A) and for tandem duplications (B).</p
    corecore