209 research outputs found

    An Eye-Tracking Experiment of Investors’ Visual Attention and Investment Intention Toward Crowdfunding Platforms

    Get PDF
    Numerous crowdfunding platforms are available on the Web. Such platforms provide access for both profit-making and non-profit organizations. It is worth exploring how to attract investor attention related to viewing fundraising proposals and to assess investment intention on such platforms. The purpose of this study is to explore which one or more elements contained in fundraising proposals presented on the platforms under consideration significantly affect investment intention. In this study, three observable elements were selected based on the development of a business model, where an eye-tracking method was used to capture investors’ visual attention. Six experimental scenarios were developed, and a total of 48 participants were invited to participate. Finally, it was found that the value proposition element obtained the most visual attention, and the key activities element had a significant impact on the participants’ investment intention, especially when the proposal provided adequate details related to the appropriation of funds

    Caspase-8 inactivation drives autophagy-dependent inflammasome activation in myeloid cells.

    Get PDF
    Caspase-8 activity controls the switch from cell death to pyroptosis when apoptosis and necroptosis are blocked, yet how caspase-8 inactivation induces inflammasome assembly remains unclear. We show that caspase-8 inhibition via IETD treatment in Toll-like receptor (TLR)-primed Fadd-/-Ripk3-/- myeloid cells promoted interleukin-1β (IL-1β) and IL-18 production through inflammasome activation. Caspase-8, caspase-1/11, and functional GSDMD, but not NLRP3 or RIPK1 activity, proved essential for IETD-triggered inflammasome activation. Autophagy became prominent in IETD-treated Fadd-/-Ripk3-/- macrophages, and inhibiting it attenuated IETD-induced cell death and IL-1β/IL-18 production. In contrast, inhibiting GSDMD or autophagy did not prevent IETD-induced septic shock in Fadd-/-Ripk3-/- mice, implying distinct death processes in other cell types. Cathepsin-B contributes to IETD-mediated inflammasome activation, as its inhibition or down-regulation limited IETD-elicited IL-1β production. Therefore, the autophagy and cathepsin-B axis represents one of the pathways leading to atypical inflammasome activation when apoptosis and necroptosis are suppressed and capase-8 is inhibited in myeloid cells

    Spatiotemporally Discriminative Video-Language Pre-Training with Text Grounding

    Full text link
    Most of existing video-language pre-training methods focus on instance-level alignment between video clips and captions via global contrastive learning but neglect rich fine-grained local information, which is of importance to downstream tasks requiring temporal localization and semantic reasoning. In this work, we propose a simple yet effective video-language pre-training framework, namely G-ViLM, to learn discriminative spatiotemporal features. Two novel designs involving spatiotemporal grounding and temporal grouping promote learning local region-noun alignment and temporal-aware features simultaneously. Specifically, spatiotemporal grounding aggregates semantically similar video tokens and aligns them with noun phrases extracted from the caption to promote local region-noun correspondences. Moreover, temporal grouping leverages cut-and-paste to manually create temporal scene changes and then learns distinguishable features from different scenes. Comprehensive evaluations demonstrate that G-ViLM performs favorably against existing approaches on four representative downstream tasks, covering text-video retrieval, video question answering, video action recognition and temporal action localization. G-ViLM performs competitively on all evaluated tasks and in particular achieves R@10 of 65.1 on zero-shot MSR-VTT retrieval, over 9% higher than the state-of-the-art method

    On the Impossibility of General Parallel Fast-Forwarding of Hamiltonian Simulation

    Get PDF
    Hamiltonian simulation is one of the most important problems in the field of quantum computing. There have been extended efforts on designing algorithms for faster simulation, and the evolution time T for the simulation greatly affect algorithm runtime as expected. While there are some specific types of Hamiltonians that can be fast-forwarded, i.e., simulated within time o(T), for some large classes of Hamiltonians (e.g., all local/sparse Hamiltonians), existing simulation algorithms require running time at least linear in the evolution time T. On the other hand, while there exist lower bounds of ?(T) circuit size for some large classes of Hamiltonian, these lower bounds do not rule out the possibilities of Hamiltonian simulation with large but "low-depth" circuits by running things in parallel. As a result, physical systems with system size scaling with T can potentially do a fast-forwarding simulation. Therefore, it is intriguing whether we can achieve fast Hamiltonian simulation with the power of parallelism. In this work, we give a negative result for the above open problem in various settings. In the oracle model, we prove that there are time-independent sparse Hamiltonians that cannot be simulated via an oracle circuit of depth o(T). In the plain model, relying on the random oracle heuristic, we show that there exist time-independent local Hamiltonians and time-dependent geometrically local Hamiltonians on n qubits that cannot be simulated via an oracle circuit of depth o(T/n^c), where the Hamiltonians act on n qubits, and c is a constant. Lastly, we generalize the above results and show that any simulators that are geometrically local Hamiltonians cannot do the simulation much faster than parallel quantum algorithms

    An in situ study on the coalescence of monolayer-protected Au-Ag nanoparticle deposits upon heating

    Get PDF
    The structural evolution of thiolate-protected nanoparticles of gold, silver, and their alloys with various Au/Ag ratios (3:1, 1:1, and 1:3) upon heating was investigated by means of in situ synchrotron radiation X-ray diffraction. The relationships between the coalescence and composition of nanoparticles, as well as the surfactant reactions, were clarified. Experimental results show that there existed a critical temperature ranging from 120°C to 164°C, above which the tiny broad X-ray diffraction peaks became sharp and strong due to particle coalescence. The coalescence temperatures for alloy nanoparticle deposits were clearly lower than those for pure metals, which can be ascribed to the rivalry between the thermodynamic effect due to alloying and the interactions between surface-assembled layers and the surface atoms of the nanoparticles. The strong affinity of thiolates to Ag and thus complex interactions give rise to a greater energy barrier for the coalescence of nanoparticles into the bulk and subsequent high coalescence temperature. The influences of particle coalescence on the optical and electrical properties of the nanoparticle deposits were also explored

    In vitro ruminal fermentation and cow-to-mouse fecal transplantations verify the inter-relationship of microbiome and metabolome biomarkers: potential to promote health in dairy cows

    Get PDF
    IntroductionThere are differences in the gut microbiome and metabolome when the host undergoes different physical or pathological conditions. However, the inter-relationship of microbiome and metabolome biomarkers to potentially promote the health of dairy cows needs to be studied. Further, the development of next-generation probiotics for dairy cattle health promotion has not been demonstrated.ObjectiveIn the present study, we identified the microbiome and metabolome biomarkers associated with healthy cows.MethodsWe analyzed the relationships of the ruminal microorganism profile and metabolites between healthy and mastitis lactating dairy cows. The roles of bacterial biomarker were further verified by in vitro fermentation and cow-to-mouse fecal microbiota transplantation (FMT).ResultsTwo species, Ruminococcus flavefaciens and Bifidobacterium longum subsp. longum, and six rumen metabolites were positively correlated with healthy cows by Spearman’s correlation analysis. Through in vitro ruminal fermentation, inoculating R. flavefaciens and B. longum subsp. longum showed the upregulation of the levels of putrescine, xanthurenic acid, and pyridoxal in the mastitis ruminal fluid, which confirmed the inter-relationships between these microbiota and metabolites associated with healthy cows. Further, we verified the role of R. flavefaciens and B. longum subsp. longum in promoting health by FMT. The administration of R. flavefaciens and B. longum subsp. longum reduced the death rate and recovered the bodyweight loss of germ-free mice caused by FMT mastitis feces.DiscussionWe provided evidence that the bacterial biomarkers alter downstream metabolites. This could indirectly indicate that the two bacterial biomarkers have the potential to be used as next-generation probiotics for dairy cattle, although it needs more evidence to support our hypothesis. Two species, R. flavefaciens and B. longum subsp. longum, with three metabolites, putrescine, xanthurenic acid, and pyridoxal, identified in the ruminal fluid, may point to a new health-promoting and disease-preventing approach for dairy cattle

    B-Cell Lymphoma 6 (BCL6) Is a Host Restriction Factor That Can Suppress HBV Gene Expression and Modulate Immune Responses

    Get PDF
    Hepatitis B virus (HBV) infection causes acute and chronic liver inflammation. Recent studies have demonstrated that some viral antigens can suppress host innate and adaptive immunity, and thus lead to HBV liver persistency. However, the cellular factors that can help host cells to clear HBV during acute infection remain largely unknown. Here, we used HBV-cleared and HBV-persistent mouse models to seek for cellular factors that might participate in HBV clearance. HBV replicon DNA was delivered into the mouse liver by hydrodynamic injection. RNA-Seq analysis was conducted to identify immune-related genes that were differentially expressed in HBV-persistent and HBV-cleared mouse models. A cellular factor, B cell lymphoma 6 (BCL6), was found to be significantly upregulated in the liver of HBV-cleared mice upon HBV clearance. Co-expression of BCL6 and a persistent HBV clone rendered the clone largely cleared, implicating an important role of BCL6 in controlling HBV clearance. Mechanistic studies demonstrated that BCL6 functioned as a repressor, binding to and suppressing the activities of the four HBV promoters. Correspondingly, BCL6 expression significantly reduced the levels of HBV viral RNA, DNA, and proteins. BCL6 expression could be stimulated by inflammatory cytokines such as TNF-Îą; the BCL6 in turn synergized TNF-Îą signaling to produce large amounts of CXCL9 and CXCL10, leading to increased infiltrating immune cells and elevated cytokine levels in the liver. Thus, positive feedback loops on BCL6 expression and immune responses could be produced. Together, our results demonstrate that BCL6 is a novel host restriction factor that exerts both anti-HBV and immunomodulatory activities. Induction of BCL6 in the liver may ultimately assist host immune responses to clear HBV

    Levitation by a dipole electric field

    Full text link
    The phenomenon of floating can be fascinating in any field, with its presence seen in art, films, and scientific research. This phenomenon is a captivating and pertinent subject with practical applications, such as Penning traps for antimatter confinement and Ion traps as essential architectures for quantum computing models. In our project, we reproduced the 1893 water bridge experiment using glycerol and first observed that lump-like macroscopic dipole moments can undergo near-periodic oscillations that exhibit floating effects and do not need classical bridge form. By combining experimental analysis, neural networks, investigation of Kelvin force generated by the Finite element method, and exploration of discharging, we gain insights into the mechanisms of motion. Our discovery has overturned the previous impression of a bridge floating in the water, leading to a deeper understanding of the new trap mechanism under strong electric fields with a single pair of electrodes.Comment: 5 pages, 5 figure

    Potassium {4-[(3S,6S,9S)-3,6-dibenzyl-9-isopropyl-4,7,10-trioxo-11–oxa-2,5,8-triazadodecyl]phenyl}trifluoroborate

    Get PDF
    [[abstract]]The reported compound 4 was synthesized and fully characterized by 1H NMR, 13C NMR, 11B NMR, 19F NMR, and high resolution mass spectrometry.[[booktype]]電子版[[countrycodes]]CH

    Prophage Excision in Streptococcus pneumoniae Serotype 19A ST320 Promote Colonization: Insight Into Its Evolution From the Ancestral Clone Taiwan 19F-14 (ST236)

    Get PDF
    Streptococcus pneumoniae 19A ST320, a multidrug-resistant strain with high disease severity that notoriously spread before the use of expanded pneumococcal conjugate vaccines, was derived from a capsular switching event between an international strain Taiwan 19F-14 (ST236) and a serotype 19A strain. However, the molecular mechanisms underlying the adaptive evolution of 19F ST236 to 19A ST320 are unknown. In this study, we compared 19A ST320 to its ancestral clone, 19F ST236, in terms of adherence to respiratory epithelial cells, whole transcriptome, and ability to colonize a young mouse model. Serotype 19A ST320 showed five-fold higher adherence to A549 cells than serotype 19F ST236. High-throughput mRNA sequencing identified a prophage region located between dnaN and ychF in both strains; however, the genes in this region were expressed at significantly higher levels in 19A ST320 than in 19F ST236. Analysis by polymerase chain reaction (PCR) showed that the prophage is able to spontaneously excise from the chromosome and form a circular episome in 19A ST320, but not in 19F ST236. Deletion of the integrase in the prophage of 19A ST320 decreased spontaneous excision and cell adherence, which were restored by complementation. Competition experiments in mice showed that the integrase mutant was six-fold less competitive than the 19A ST320 parent (competitive index [CI]: 0.16; p = 0.02). The 19A ST320 prophage-deleted strain did not change cell adherence capacity, whereas prophage integration strains (integrase mutant and 19F) had decreased expression of the down-stream ychF gene compared to that of 19A ST320. Further deletion of ychF significantly reduced cell adherence. In conclusions, these findings suggest that spontaneous prophage induction confers a competitive advantage to virulent pneumococci
    • …
    corecore