46 research outputs found

    Oscillation frequencies and mode lifetimes in alpha Centauri A

    Full text link
    We analyse our recently-published velocity measurements of alpha Cen A (Butler et al. 2004). After adjusting the weights on a night-by-night basis in order to optimize the window function to minimize sidelobes, we extract 42 oscillation frequencies with l=0 to 3 and measure the large and small frequency separations. We give fitted relations to these frequencies that can be compared with theoretical models and conclude that the observed scatter about these fits is due to the finite lifetimes of the oscillation modes. We estimate the mode lifetimes to be 1-2 d, substantially shorter than in the Sun.Comment: Accepted by Ap

    Solar-like oscillations in the G2 subgiant beta Hydri from dual-site observations

    Full text link
    We have observed oscillations in the nearby G2 subgiant star beta Hyi using high-precision velocity observations obtained over more than a week with the HARPS and UCLES spectrographs. The oscillation frequencies show a regular comb structure, as expected for solar-like oscillations, but with several l=1 modes being strongly affected by avoided crossings. The data, combined with those we obtained five years earlier, allow us to identify 28 oscillation modes. By scaling the large frequency separation from the Sun, we measure the mean density of beta Hyi to an accuracy of 0.6%. The amplitudes of the oscillations are about 2.5 times solar and the mode lifetime is 2.3 d. A detailed comparison of the mixed l=1 modes with theoretical models should allow a precise estimate of the age of the star.Comment: 13 pages, 14 figures, accepted by ApJ. Fixed minor typo (ref to Fig 14

    The Gliese 86 Binary System: A Warm Jupiter Formed in a Disk Truncated at ≈2 au

    Get PDF
    © 2022. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/Gliese 86 is a nearby K dwarf hosting a giant planet on a ≈16 day orbit and an outer white dwarf companion on a ≈century-long orbit. In this study we combine radial velocity data (including new measurements spanning more than a decade) with high angular resolution imaging and absolute astrometry from Hipparcos and Gaia to measure the current orbits and masses of both companions. We then simulate the evolution of the Gl 86 system to constrain its primordial orbit when both stars were on the main sequence; the closest approach between the two stars was then about 9 au. Such a close separation limited the size of the protoplanetary disk of Gl 86 A and dynamically hindered the formation of the giant planet around it. Our measurements of Gl 86 B and Gl 86 Ab’s orbits reveal Gl 86 as a system in which giant planet formation took place in a disk truncated at ≈2 au. Such a disk would be just big enough to harbor the dust mass and total mass needed to assemble Gl 86 Ab’s core and envelope, assuming a high disk accretion rate and a low viscosity. Inefficient accretion of the disk onto Gl 86 Ab, however, would require a disk massive enough to approach the Toomre stability limit at its outer truncation radius. The orbital architecture of the Gl 86 system shows that giant planets can form even in severely truncated disks and provides an important benchmark for planet formation theory.Peer reviewe

    Revised Architecture and Two New Super-Earths in the HD 134606 Planetary System

    Get PDF
    © 2024. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Multiplanet systems exhibit a diversity of architectures that diverge from the solar system and contribute to the topic of exoplanet demographics. Radial velocity (RV) surveys form a crucial component of exoplanet surveys, as their long observational baselines allow for searches for more distant planetary orbits. This work provides a significantly revised architecture for the multiplanet system HD 134606 using both HARPS and UCLES RVs. We confirm the presence of previously reported planets b, c, and d with periods of 12.0897 − 0.0018 + 0.0019 , 58.947 − 0.054 + 0.056 , and 958.7 − 5.9 + 6.3 days and masses of 9.14 − 0.63 + 0.65 , 11.0 ± 1, and 44.5 ± 2.9 Earth masses, respectively, with the planet d orbit significantly revised to over double that originally reported. We report two newly detected super-Earths, e and f, with periods of 4.31943 − 0.00068 + 0.00075 and 26.9 − 0.017 + 0.019 days and masses of 2.31 − 0.35 + 0.36 and 5.52 − 0.73 + 0.74 Earth masses, respectively. In addition, we identify a linear trend in the RV time series, and the cause of this acceleration is deemed to be a newly detected massive companion with a very long orbital period. HD 134606 now displays four low-mass planets in a compact region near the star, one gas giant further out in the habitable zone, an additional companion in the outer regime, and a low-mass M dwarf stellar companion at large separation, making it an intriguing target for system formation/evolution studies. The location of planet d in the habitable zone proves to be an exciting candidate for future space-based direct imaging missions, whereas continued RV observations of this system are recommended for understanding the nature of the massive, long-period companion.Peer reviewe

    MagAO Imaging of Long-period Objects (MILO). II. A Puzzling White Dwarf around the Sun-like Star HD 11112

    Get PDF
    The version of record, Rodigas, T. J. et al, 'MagAO Imaging of long-period objects (MILO). II. A puzzling white dwarf around the sun-like star HD 11112', The Astrophysical Journal, 831:177, November 2016, is available online via doi: 10.3847/0004-637X/831/2/177 © 2016. The American Astronomical Society. All rights reserved.HD 11112 is an old, Sun-like star that has a long-term radial velocity (RV) trend indicative of a massive companion on a wide orbit. Here we present direct images of the source responsible for the trend using the Magellan Adaptive Optics system. We detect the object (HD 11112B) at a separation of 2\fasec 2 (100 AU) at multiple wavelengths spanning 0.6-4 \microns ~and show that it is most likely a gravitationally-bound cool white dwarf. Modeling its spectral energy distribution (SED) suggests that its mass is 0.9-1.1 \msun, which corresponds to very high-eccentricity, near edge-on orbits from Markov chain Monte Carlo analysis of the RV and imaging data together. The total age of the white dwarf is >2σ>2\sigma discrepant with that of the primary star under most assumptions. The problem can be resolved if the white dwarf progenitor was initially a double white dwarf binary that then merged into the observed high-mass white dwarf. HD 11112B is a unique and intriguing benchmark object that can be used to calibrate atmospheric and evolutionary models of cool white dwarfs and should thus continue to be monitored by RV and direct imaging over the coming years.Peer reviewedFinal Published versio

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article
    corecore