52 research outputs found

    The morphology of xenarthrous vertebrae (Mammalia: Xenarthra) /

    Get PDF
    n.s. no.41 (1999

    The basicranium and orbital ergion of the early miocene Eucholoeops ingens Ameghino, (Xenarthra, Pilosa, Megalonychidae)

    Get PDF
    Fil: Gaudin, Timothy J.. Department of Biological and Environmental Sciences. University of Tennessee at Chattanooga; USAFil: De Iuliis, Gerardo. Department of Ecology and Evolutionary Biology. University of Toronto; CanadaFil: Toledo, Néstor. División Paleontología Vertebrados. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata; Argentin

    Osteología craneana y taxonomía de Pronothrotherium (xenarthra, folivora, nothrotheriidae) del mioceno tardío–plioceno temprano de la provincia de Catamarca (Argentina)

    Get PDF
    Pronothrotherium typicum es un perezoso notrotérido del Mioceno tardío–Plioceno temprano (Edades Mamífero Huayqueriense–Chapadmalense) de la provincia de Catamarca, noroeste de Argentina. Pronothrotherium es uno de los cuatro géneros de notroterinos cuyos esqueletos son relativamente completos, pero a diferencia de los otros tres, su anatomía no ha sido formalmente descripta. El presente estudio proporciona las primeras descripciones e ilustraciones de la anatomía craneana de Pronothrotherium, basadas principalmente en un cráneo casi completo de un subadulto y un fragmento de cráneo de un adulto de P. typicum, depositados en las colecciones del Field Museum (Chicago, Illinois, USA). Se provee también una revisión de la diagnosis de P. typicum basada en caracteres craneanos. El cráneo de esta especie muestra una serie de características específicas, como una marcada quilla del vómer en la región nasofaríngea que termina en una protuberancia globosa, que representaría una característica única dentro de los mamíferos. Sobre la base del presente estudio se reconocen dos especies contemporáneas del género Pronothrotherium, P. typicum y P. mirabilis, aunque la segunda es más dudosa. No se acepta la validez de una tercera especie anteriormente descripta, P. figueirasi, que es considerada como sinónimo de P. mirabilis. Este estudio no se propone resolver las relaciones filogenéticas inciertas entre los notroterinos más conocidos Pronothrotherium, Mionothropus (Mioceno tardío) y los dos géneros de Nothrotheriini pleistocenos, Nothrotherium y Nothrotheriops. Sin embargo, esperamos que los datos proporcionados faciliten futuros estudios que abarquen estas cuestiones.Pronothrotherium typicum is a late Miocene–early Pliocene (Huayquerian–Chapadmalalan SALMA) nothrotheriid sloth known from the Catamarca Province of northwestern Argentina. Pronothrotherium is one of four nothrotheriid genera known from relatively complete skeletal material, but unlike the other three, the osteology of Pronothrotherium has not been formally described. The present study provides the first detailed description and illustration of the cranial anatomy of Pronothrotherium, based largely on a nearly complete, subadult skull of P. typicum from the collections of The Field Museum (Chicago, Illinois, USA), as well as a less well-preserved adult skull and isolated mandible from the same collections. A revised cranial diagnosis of P. typicum is provided in the text. The skull of this species shows a number of distinctive features, most notably a peculiar vomerine keel in the nasopharynx, terminating in a swollen knob, that is, as far we know, a unique morphology among mammals. Based on the results of the present study, there appears to be reason to recognize two contemporaneous species of Pronothrotherium, P. typicum and P. mirabilis, although the latter is less well supported. We do not accept the validity of a third described species, P. figueirasi, considering it instead to be synonymous with P. mirabilis. The present study does not resolve the uncertain phylogenetic relationships among the well-preserved nothrotheriine taxa Pronothrotherium, Mionothropus (late Miocene), and the two Pleistocene genera in Nothrotheriini, Nothrotherium and Nothrotheriops. However, we hope that the data provided will facilitate subsequent phylogenetic studies that may resolve these issues.Fil: Gaudin, Timothy J.. University of Tennessee; Estados UnidosFil: Tuckniss, Susan. University of Tennessee; Estados UnidosFil: Boscaini, Alberto. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Pujos, François Roger Francis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: De Iuliis, Gerardo. University of Toronto; Canad

    Increasing crop rotational diversity can enhance cereal yields

    Get PDF
    Diversifying agriculture by rotating a greater number of crop species in sequence is a promising practice to reduce negative impacts of crop production on the environment and maintain yields. However, it is unclear to what extent cereal yields change with crop rotation diversity and external nitrogen fertilization level over time, and which functional groups of crops provide the most yield benefit. Here, using grain yield data of small grain cereals and maize from 32 long-term (10–63 years) experiments across Europe and North America, we show that crop rotational diversity, measured as crop species diversity and functional richness, enhanced grain yields. This yield benefit increased over time. Only the yields of winter-sown small grain cereals showed a decline at the highest level of species diversity. Diversification was beneficial to all cereals with a low external nitrogen input, particularly maize, enabling a lower dependence on nitrogen fertilisers and ultimately reducing greenhouse gas emissions and nitrogen pollution. The results suggest that increasing crop functional richness rather than species diversity can be a strategy for supporting grain yields across many environments

    Increasing crop rotational diversity can enhance cereal yields

    Get PDF
    9 Pág.Diversifying agriculture by rotating a greater number of crop species in sequence is a promising practice to reduce negative impacts of crop production on the environment and maintain yields. However, it is unclear to what extent cereal yields change with crop rotation diversity and external nitrogen fertilization level over time, and which functional groups of crops provide the most yield benefit. Here, using grain yield data of small grain cereals and maize from 32 long-term (10–63 years) experiments across Europe and North America, we show that crop rotational diversity, measured as crop species diversity and functional richness, enhanced grain yields. This yield benefit increased over time. Only the yields of winter-sown small grain cereals showed a decline at the highest level of species diversity. Diversification was beneficial to all cereals with a low external nitrogen input, particularly maize, enabling a lower dependence on nitrogen fertilisers and ultimately reducing greenhouse gas emissions and nitrogen pollution. The results suggest that increasing crop functional richness rather than species diversity can be a strategy for supporting grain yields across many environments.G.V., R.B. and S.H. acknowledge FORMAS grants 2018-02872 and 2018-02321. TMB acknowledges USDA AFRI grant 2017-67013-26254. LTEs managed by SRUC were supported by the Scottish Government RESAS Strategic Research Programme under project D3-, Healthy Soils for a Green Recovery. Swedish LTEs were funded by the Swedish University of Agricultural Sciences (SLU). We thank the Lawes Agricultural Trust and Rothamsted Research for data from the e-RA database. The Rothamsted Long-term Experiments National Capability (LTE-NC) was supported by the UK BBSRC (Biotechnology and Biological Sciences Research Council, BBS/E/C/000J0300) and the Lawes Agricultural Trust. The Woodslee site was supported by the Agro-Ecosystem Resilience Program (Agriculture & Agri-Food Canada) and field management provided by field crews over 6 decades is appreciated. La Canaleja LTE (Spain) was supported by RTA2017-00006-C03-01 project (Ministry of Science and Innovation. El Encín LTEs were supported by Spanish Ministry of Economy and Competitiveness funds (projects AGL2002-04186-C03-01.03, AGL2007-65698-C03-01.03, AGL2012-39929-C03-01 of which L. Navarrete was the P.I). R.A., A.G.D. and E.H.P. are also grateful to all members of the Weed Science Group from El Encín Experimental Station for their technical assistance in managing the experiments. The Brody/Poznan University of Life Sciences long-term experiments were funded by the Polish Ministry of Education and Science. We acknowledge the E-Obs dataset from the EU-FP6 project UERRA (http://www.uerra.eu) and the Copernicus Climate Change Service, and the data providers in the ECA&D project (https://www.ecad.eu/).Peer reviewe

    Crop rotational diversity can mitigate climate-induced grain yield losses

    Get PDF
    Diversified crop rotations have been suggested to reduce grain yield losses from the adverse climatic conditions increasingly common under climate change. Nevertheless, the potential for climate change adaptation of different crop rotational diversity (CRD) remains undetermined. We quantified how climatic conditions affect small grain and maize yields under different CRDs in 32 long-term (10-63 years) field experiments across Europe and North America. Species-diverse and functionally rich rotations more than compensated yield losses from anomalous warm conditions, long and warm dry spells, as well as from anomalous wet (for small grains) or dry (for maize) conditions. Adding a single functional group or crop species to monocultures counteracted yield losses from substantial changes in climatic conditions. The benefits of a further increase in CRD are comparable with those of improved climatic conditions. For instance, the maize yield benefits of adding three crop species to monocultures under detrimental climatic conditions exceeded the average yield of monocultures by up to 553 kg/ha under non-detrimental climatic conditions. Increased crop functional richness improved yields under high temperature, irrespective of precipitation. Conversely, yield benefits peaked at between two and four crop species in the rotation, depending on climatic conditions and crop, and declined at higher species diversity. Thus, crop species diversity could be adjusted to maximize yield benefits. Diversifying rotations with functionally distinct crops is an adaptation of cropping systems to global warming and changes in precipitation.</p

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Full text link
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959\,nm at R5000R\sim5000, or two shorter ranges at R20000R\sim20\,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for \sim3 million stars and detailed abundances for 1.5\sim1.5 million brighter field and open-cluster stars; (ii) survey 0.4\sim0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey 400\sim400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z<0.5z<0.5 cluster galaxies; (vi) survey stellar populations and kinematics in 25000\sim25\,000 field galaxies at 0.3z0.70.3\lesssim z \lesssim 0.7; (vii) study the cosmic evolution of accretion and star formation using >1>1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.Comment: 41 pages, 27 figures, accepted for publication by MNRA

    The wide-field, multiplexed, spectroscopic facility WEAVE : survey design, overview, and simulated implementation

    Get PDF
    Funding for the WEAVE facility has been provided by UKRI STFC, the University of Oxford, NOVA, NWO, Instituto de Astrofísica de Canarias (IAC), the Isaac Newton Group partners (STFC, NWO, and Spain, led by the IAC), INAF, CNRS-INSU, the Observatoire de Paris, Région Île-de-France, CONCYT through INAOE, Konkoly Observatory (CSFK), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Lund University, the Leibniz Institute for Astrophysics Potsdam (AIP), the Swedish Research Council, the European Commission, and the University of Pennsylvania.WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼ 3 million stars and detailed abundances for ∼ 1.5 million brighter field and open-cluster stars; (ii) survey ∼ 0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey  ∼ 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z 1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.PostprintPeer reviewe

    Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance : a retrospective cohort study

    Get PDF
    BACKGROUND : Diagnosing drug-resistance remains an obstacle to the elimination of tuberculosis. Phenotypic drugsusceptibility testing is slow and expensive, and commercial genotypic assays screen only common resistancedetermining mutations. We used whole-genome sequencing to characterise common and rare mutations predicting drug resistance, or consistency with susceptibility, for all fi rst-line and second-line drugs for tuberculosis. METHODS : Between Sept 1, 2010, and Dec 1, 2013, we sequenced a training set of 2099 Mycobacterium tuberculosis genomes. For 23 candidate genes identifi ed from the drug-resistance scientifi c literature, we algorithmically characterised genetic mutations as not conferring resistance (benign), resistance determinants, or uncharacterised. We then assessed the ability of these characterisations to predict phenotypic drug-susceptibility testing for an independent validation set of 1552 genomes. We sought mutations under similar selection pressure to those characterised as resistance determinants outside candidate genes to account for residual phenotypic resistance. FINDINGS : We characterised 120 training-set mutations as resistance determining, and 772 as benign. With these mutations, we could predict 89·2% of the validation-set phenotypes with a mean 92·3% sensitivity (95% CI 90·7–93·7) and 98·4% specifi city (98·1–98·7). 10·8% of validation-set phenotypes could not be predicted because uncharacterised mutations were present. With an in-silico comparison, characterised resistance determinants had higher sensitivity than the mutations from three line-probe assays (85·1% vs 81·6%). No additional resistance determinants were identifi ed among mutations under selection pressure in non-candidate genes. INTERPRETATION : A broad catalogue of genetic mutations enable data from whole-genome sequencing to be used clinically to predict drug resistance, drug susceptibility, or to identify drug phenotypes that cannot yet be genetically predicted. This approach could be integrated into routine diagnostic workfl ows, phasing out phenotypic drugsusceptibility testing while reporting drug resistance early.Wellcome Trust, National Institute of Health Research, Medical Research Council, and the European Union.http://www.thelancet.com/infectionhb201
    corecore