13 research outputs found
Classifying complex topics using spatial-semantic document visualization: An evaluation of an interaction model to support open-ended search tasks
This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.In this dissertation we propose, test and develop a novel search interaction model to address two key problems associated with conducting an open-ended search task within a classical information retrieval system: (i) the need to reformulate the query within the context of a shifting conception of the problem and (ii) the need to integrate relevant results across a number of separate results sets. In our model the user issues just one highrecall query and then performs a sequence of more focused, distinct aspect searches by
browsing the static structured context of a spatial-semantic visualization of this retrieved
document set. Our thesis is that unsupervised spatial-semantic visualization can automatically classify retrieved documents into a two-level hierarchy of relevance. In particular we hypothesise that the locality of any given aspect exemplar will tend to comprise a sufficient proportion of same-aspect documents to support a visually guided strategy for focused, same-aspect searching that we term the aspect cluster growing
strategy. We examine spatial-semantic classification and potential aspect cluster growing performance across three scenarios derived from topics and relevance judgements from
the TREC test collection. Our analyses show that the expected classification can be represented in spatial-semantic structures created from document similarities computed by a simple vector space text analysis procedure. We compare two diametrically opposed approaches to layout optimisation: a global approach that focuses on preserving the all similarities and a local approach that focuses only on the strongest similarities. We find that the local approach, based on a minimum spanning tree of similarities, produces a better classification and, as observed from strategy simulation, more efficient aspect cluster growing performance in most situations, compared to the global approach of multidimensional scaling. We show that a small but significant proportion of aspect clustering
growing cases can be problematic, regardless of the layout algorithm used. We identify the
characteristics of these cases and, on this basis, demonstrate a set of novel interactive tools that provide additional semantic cues to aid the user in locating same-aspect documents
Visualising the structure of document search results: A comparison of graph theoretic approaches
This is the post-print of the article - Copyright @ 2010 Sage PublicationsPrevious work has shown that distance-similarity visualisation or ‘spatialisation’ can provide a potentially useful context in which to browse the results of a query search, enabling the user to adopt a simple local foraging or ‘cluster growing’ strategy to navigate through the retrieved document set. However, faithfully mapping feature-space models to visual space can be problematic owing to their inherent high dimensionality and non-linearity. Conventional linear approaches to dimension reduction tend to fail at this kind of task, sacrificing local structural in order to preserve a globally optimal mapping. In this paper the clustering performance of a recently proposed algorithm called isometric feature mapping (Isomap), which deals with non-linearity by transforming dissimilarities into geodesic distances, is compared to that of non-metric multidimensional scaling (MDS). Various graph pruning methods, for geodesic distance estimation, are also compared. Results show that Isomap is significantly better at preserving local structural detail than MDS, suggesting it is better suited to cluster growing and other semantic navigation tasks. Moreover, it is shown that applying a minimum-cost graph pruning criterion can provide a parameter-free alternative to the traditional K-neighbour method, resulting in spatial clustering that is equivalent to or better than that achieved using an optimal-K criterion
Classifying complex topics using spatial-semantic document visualization : an evaluation of an interaction model to support open-ended search tasks
In this dissertation we propose, test and develop a novel search interaction model to address two key problems associated with conducting an open-ended search task within a classical information retrieval system: (i) the need to reformulate the query within the context of a shifting conception of the problem and (ii) the need to integrate relevant results across a number of separate results sets. In our model the user issues just one highrecall query and then performs a sequence of more focused, distinct aspect searches by browsing the static structured context of a spatial-semantic visualization of this retrieved document set. Our thesis is that unsupervised spatial-semantic visualization can automatically classify retrieved documents into a two-level hierarchy of relevance. In particular we hypothesise that the locality of any given aspect exemplar will tend to comprise a sufficient proportion of same-aspect documents to support a visually guided strategy for focused, same-aspect searching that we term the aspect cluster growing strategy. We examine spatial-semantic classification and potential aspect cluster growing performance across three scenarios derived from topics and relevance judgements from the TREC test collection. Our analyses show that the expected classification can be represented in spatial-semantic structures created from document similarities computed by a simple vector space text analysis procedure. We compare two diametrically opposed approaches to layout optimisation: a global approach that focuses on preserving the all similarities and a local approach that focuses only on the strongest similarities. We find that the local approach, based on a minimum spanning tree of similarities, produces a better classification and, as observed from strategy simulation, more efficient aspect cluster growing performance in most situations, compared to the global approach of multidimensional scaling. We show that a small but significant proportion of aspect clustering growing cases can be problematic, regardless of the layout algorithm used. We identify the characteristics of these cases and, on this basis, demonstrate a set of novel interactive tools that provide additional semantic cues to aid the user in locating same-aspect documents.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Classifying complex topics using spatial-semantic document visualization : an evaluation of an interaction model to support open-ended search tasks
In this dissertation we propose, test and develop a novel search interaction model to address two key problems associated with conducting an open-ended search task within a classical information retrieval system: (i) the need to reformulate the query within the context of a shifting conception of the problem and (ii) the need to integrate relevant results across a number of separate results sets. In our model the user issues just one highrecall query and then performs a sequence of more focused, distinct aspect searches by browsing the static structured context of a spatial-semantic visualization of this retrieved document set. Our thesis is that unsupervised spatial-semantic visualization can automatically classify retrieved documents into a two-level hierarchy of relevance. In particular we hypothesise that the locality of any given aspect exemplar will tend to comprise a sufficient proportion of same-aspect documents to support a visually guided strategy for focused, same-aspect searching that we term the aspect cluster growing strategy. We examine spatial-semantic classification and potential aspect cluster growing performance across three scenarios derived from topics and relevance judgements from the TREC test collection. Our analyses show that the expected classification can be represented in spatial-semantic structures created from document similarities computed by a simple vector space text analysis procedure. We compare two diametrically opposed approaches to layout optimisation: a global approach that focuses on preserving the all similarities and a local approach that focuses only on the strongest similarities. We find that the local approach, based on a minimum spanning tree of similarities, produces a better classification and, as observed from strategy simulation, more efficient aspect cluster growing performance in most situations, compared to the global approach of multidimensional scaling. We show that a small but significant proportion of aspect clustering growing cases can be problematic, regardless of the layout algorithm used. We identify the characteristics of these cases and, on this basis, demonstrate a set of novel interactive tools that provide additional semantic cues to aid the user in locating same-aspect documents.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Footprints of information foragers: behaviour semantics of visual exploration
International Journal of Human-Computer Studies, 57 (2): pp.139-163.Social navigation exploits the knowledge and experience of peer users of information
resources. A wide variety of visual–spatial approaches become increasingly popular as a
means to optimize information access as well as to foster and sustain a virtual community
among geographically distributed users. An information landscape is among the most
appealing design options of representing and communicating the essence of distributed
information resources to users. A fundamental and challenging issue is how an
information landscape can be designed such that it will not only preserve the essence of
the underlying information structure, but also accommodate the diversity of individual
users. The majority of research in social navigation has been focusing on how to extract
useful information from what is in common between users’ profiles, their interests and
preferences. In this article, we explore the role of modelling sequential behaviour patterns
of users in augmenting social navigation in thematic landscapes. In particular, we
compare and analyse the trails of individual users in thematic spaces along with their
cognitive ability measures. We are interested in whether such trails can provide useful
guidance for social navigation if they are embedded in a visual–spatial environment.
Furthermore, we are interested in whether such information can help users to learn from
each other, for example, from the ones who have been successful in retrieving documents.
In this article, we first describe how users’ trails in sessions of an experimental study of
visual information retrieval can be characterized by Hidden Markov Models. Trails of
users with the most successful retrieval performance are used to estimate parameters of
such models. Optimal virtual trails generated from the models are visualized and
animated as if they were actual trails of individual users in order to highlight behavioral
patterns that may foster social navigation. The findings of the research will provide direct
input to the design of social navigation systems as well as to enrich theories of social
navigation in a wider context. These findings will lead to the further development and
consolidation of a tightly coupled paradigm of spatial, semantic and social navigation