3 research outputs found

    New Efficient Organic Scintillators Derived from Pyrazoline

    No full text
    We report on the synthesis, spectroscopic and scintillation properties of three new pyrazoline core based fluorophores. Fluorescence properties of the fluorophores have been studied both in a solution state and in a solid polyvinyltoluene (PVT) resin matrix of different porosity. The synthesized fluorophores were found to be promising candidates for application in plastic scintillators for detection of ionizing radiation (alpha, beta particles, γ rays and neutrons) and demonstrated superior efficiency in comparison to the existing commercially used fluorophores (2-(1-naphthyl)-5-phenyloxazole (αNPO), 9,10-diphenylanthracene, etc.). Moreover, the suggested synthetic route allows functionalization of the fluorophores with a vinyl group for further covalent bound to the PVT or other vinyl polymer matrices, which dramatically improves chemical stability of the system simultaneously improving the photoluminescence quantum yield. Possible mechanisms of the enhanced scintillation properties are discussed based on preliminary quantum mechanical calculations and spectroscopic characteristics of the fluorophores under study

    High-Resolution 4D Preclinical Single-Photon Emission Computed Tomography/X-ray Computed Tomography Imaging of Technetium Transport within a Heterogeneous Porous Media

    No full text
    A dynamic <sup>99m</sup>Tc tracer experiment was performed to investigate the capabilities of combined preclinical single photon emission computed tomography (SPECT) and X-ray computed tomography (CT) for investigating transport in a heterogeneous porous medium. The experiment was conducted by continuously injecting a <sup>99m</sup>Tc solution into a column packed with eight layers (i.e., soil, silica gel, and 0.2–4 mm glass beads). Within the imaging results it was possible to correlate observed features with objects as small as 2 mm for the SPECT and 0.2 mm for the CT. Time-lapse SPECT imaging results illustrated both local and global nonuniform transport phenomena and the high-resolution CT data were found to be useful for interpreting the cause of variations in the <sup>99m</sup>Tc concentration associated with structural features within the materials, such as macropores. The results of this study demonstrate SPECT/CT as a novel tool for 4D (i.e., transient three-dimensional) noninvasive imaging of fate and transport processes in porous media. Despite its small scale, an experiment with such high resolution data allows us to better understand the pore scale transport which can then be used to inform larger scale studies

    High-Resolution 4D Preclinical Single-Photon Emission Computed Tomography/X-ray Computed Tomography Imaging of Technetium Transport within a Heterogeneous Porous Media

    No full text
    A dynamic <sup>99m</sup>Tc tracer experiment was performed to investigate the capabilities of combined preclinical single photon emission computed tomography (SPECT) and X-ray computed tomography (CT) for investigating transport in a heterogeneous porous medium. The experiment was conducted by continuously injecting a <sup>99m</sup>Tc solution into a column packed with eight layers (i.e., soil, silica gel, and 0.2–4 mm glass beads). Within the imaging results it was possible to correlate observed features with objects as small as 2 mm for the SPECT and 0.2 mm for the CT. Time-lapse SPECT imaging results illustrated both local and global nonuniform transport phenomena and the high-resolution CT data were found to be useful for interpreting the cause of variations in the <sup>99m</sup>Tc concentration associated with structural features within the materials, such as macropores. The results of this study demonstrate SPECT/CT as a novel tool for 4D (i.e., transient three-dimensional) noninvasive imaging of fate and transport processes in porous media. Despite its small scale, an experiment with such high resolution data allows us to better understand the pore scale transport which can then be used to inform larger scale studies
    corecore