517 research outputs found

    Magnetic nanocomposites at microwave frequencies

    Full text link
    Most conventional magnetic materials used in the electronic devices are ferrites, which are composed of micrometer-size grains. But ferrites have small saturation magnetization, therefore the performance at GHz frequencies is rather poor. That is why functionalized nanocomposites comprising magnetic nanoparticles (e.g. Fe, Co) with dimensions ranging from a few nm to 100 nm, and embedded in dielectric matrices (e.g. silicon oxide, aluminium oxide) have a significant potential for the electronics industry. When the size of the nanoparticles is smaller than the critical size for multidomain formation, these nanocomposites can be regarded as an ensemble of particles in single-domain states and the losses (due for example to eddy currents) are expected to be relatively small. Here we review the theory of magnetism in such materials, and we present a novel measurement method used for the characterization of the electromagnetic properties of composites with nanomagnetic insertions. We also present a few experimental results obtained on composites consisting of iron nanoparticles in a dielectric matrix.Comment: 20 pages, 10 figures, 5 table

    Characterization of submicron aerosol chemical composition and sources in the coastal area of Central Chile

    Get PDF
    Chemical characteristics and the sources of submicron particles (<1 mu m in diameter) were investigated in Valle Alegre, the coastal area of Central Chile. The chemical composition of particles was studied by using a Soot particle Aerosol Mass Spectrometer and Multi-Angle Absorption Photometer. Submicron particles were dominated by organics (42% of mass) and sulfate (39% of mass) while the mass fractions of ammonium, nitrate and black carbon were much smaller (13, 2 and 4% of mass, respectively). Additionally, several metals (V, Zn, Fe, Cd, Cu, K, Na and Mg) were detected in submicron particles and also some of their inorganic salts (e.g. NaCl+, MgCl2+, CaCl2+, KCl+ and KNO3+). The sources of particles were examined by using Positive Matrix Factorization (PMF). Organic aerosol (OA) was divided into five factors by using PMF; hydrocarbon-like OA (HOA), biomass burning OA (BBOA), low-volatility oxygenated OA (LV-OOA), semi-volatile OA (SV-OOA) and marine oxygenated OOA (MOOA), Oxygenated factors (LV-OOA; SV-OOA and MOOA) comprised 75% of total OA with LV-OOA being the dominant factor (38% of OA). Sulfate had two major sources in Valle Alegre; similar to 70% of sulfate was related to anthropogenic sources through the oxidation of gas phase SO2 whereas similar to 24% of sulfate was associated with biogenic origin related to the oxidation of dimethyl sulfide in the marine environment. Regarding total submicron particle mass (campaign-average 9.5 mu g m(-3)), the contribution of anthropogenic sources was at least as large as that of biogenic origin.Peer reviewe

    Interaction Properties of the Periodic and Step-like Solutions of the Double-Sine-Gordon Equation

    Full text link
    The periodic and step-like solutions of the double-Sine-Gordon equation are investigated, with different initial conditions and for various values of the potential parameter ϵ\epsilon. We plot energy and force diagrams, as functions of the inter-soliton distance for such solutions. This allows us to consider our system as an interacting many-body system in 1+1 dimension. We therefore plot state diagrams (pressure vs. average density) for step-like as well as periodic solutions. Step-like solutions are shown to behave similarly to their counterparts in the Sine-Gordon system. However, periodic solutions show a fundamentally different behavior as the parameter ϵ\epsilon is increased. We show that two distinct phases of periodic solutions exist which exhibit manifestly different behavior. Response functions for these phases are shown to behave differently, joining at an apparent phase transition point.Comment: 17pages, 15 figure

    Scaling Exponents in the Incommensurate Phase of the Sine-Gordon and U(1) Thirring Models

    Full text link
    In this paper we study the critical exponents of the quantum sine-Gordon and U(1) Thirring models in the incommensurate phase. This phase appears when the chemical potential hh exceeds a critical value and is characterized by a finite density of solitons. The low-energy sector of this phase is critical and is described by the Gaussian model (Tomonaga-Luttinger liquid) with the compactification radius dependent on the soliton density and the sine-Gordon model coupling constant β\beta. For a fixed value of β\beta, we find that the Luttinger parameter KK is equal to 1/2 at the commensurate-incommensurate transition point and approaches the asymptotic value β2/8π\beta^2/8\pi away from it. We describe a possible phase diagram of the model consisting of an array of weakly coupled chains. The possible phases are Fermi liquid, Spin Density Wave, Spin-Peierls and Wigner crystal.Comment: 10pages; Improved version; Submitted to Physical Review

    Kinetics of the Methyl-Vinyl Radical + O-2 Reactions Associated with Propene Oxidation

    Get PDF
    The bimolecular rate coefficients of reactions CH3CCH2 + O-2 (1) and cis/trans-CH3CHCH + O-2 (2a/3a) have been measured using a tubular laminar flow reactor coupled with a photoionization mass spectrometer (PIMS). These reactions are relevant in the combustion of propene. Pulsed excimer laser photolysis of a ketone or a bromide precursor molecule at 193 or 248 nm wavelength was used to produce radicals of interest homogeneously along the reactor. Time-resolved experiments were performed under pseudo-first-order conditions at low pressure (0.3-1.5 Torr) over the temperature range 220-660 K. The measured bimolecular rate coefficients were found to be independent of bath gas concentration. The bimolecular rate coefficients possess negative temperature dependence at low temperatures (T 420 K). Observed products of the reaction CH3CCH2 + O-2 were CH3 and H2CO, while for the reaction cis/trans-CH3CHCH + O-2, observed products were CH3CHO and HCO. Current results indicate that the reaction mechanism of both reactions is analogous to that of C2H3 + O-2. Methyl substitution of the vinyl radical changes its reactivity toward O-2 upward by ca. 50% if it involves the alpha-position and downward by ca. 30% if the methyl group takes either of the beta-positions, respectively.Peer reviewe

    Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media

    Full text link
    Numerical micropermeametry is performed on three dimensional porous samples having a linear size of approximately 3 mm and a resolution of 7.5 ÎĽ\mum. One of the samples is a microtomographic image of Fontainebleau sandstone. Two of the samples are stochastic reconstructions with the same porosity, specific surface area, and two-point correlation function as the Fontainebleau sample. The fourth sample is a physical model which mimics the processes of sedimentation, compaction and diagenesis of Fontainebleau sandstone. The permeabilities of these samples are determined by numerically solving at low Reynolds numbers the appropriate Stokes equations in the pore spaces of the samples. The physical diagenesis model appears to reproduce the permeability of the real sandstone sample quite accurately, while the permeabilities of the stochastic reconstructions deviate from the latter by at least an order of magnitude. This finding confirms earlier qualitative predictions based on local porosity theory. Two numerical algorithms were used in these simulations. One is based on the lattice-Boltzmann method, and the other on conventional finite-difference techniques. The accuracy of these two methods is discussed and compared, also with experiment.Comment: to appear in: Phys.Rev.E (2002), 32 pages, Latex, 1 Figur

    Size distributions, sources and source areas of water-soluble organic carbon in urban background air

    Get PDF
    International audienceThis paper represents the results of one year long measurement period of the size distributions of water-soluble organic carbon (WSOC), inorganic ions and gravimetric mass of particulate matter. Measurements were done at an urban background station (SMEAR III) by using a micro-orifice uniform deposit impactor (MOUDI). The site is located in northern European boreal region in Helsinki, Finland. The WSOC size distribution measurements were completed with the chemical analysis of inorganic ions, organic carbon (OC) and monosaccharide anhydrides from the filter samples. During the measurements gravimetric mass in the MOUDI collections varied between 3.4 and 55.0 ?g m?3 and the WSOC concentration was between 0.3 and 7.4 ?g m?3. On average, water-soluble particulate organic matter (WSPOM, WSOC multiplied by 1.6) comprised 25±7.7% and 7.5±3.4% of aerosol PM1 mass and the PM1?10 mass, respectively. Inorganic ions contributed 33±12% and 28±19% of the analyzed PM1 and PM1?10 aerosol mass. Five different aerosol categories corresponding to different sources or source areas were identified (long-range transport aerosols, biomass burning aerosols from wild land fires and from small-scale wood combustion, aerosols originating from marine areas and from the clean arctic areas). Clear differences in WSOC concentrations and size distributions originating from different sources or source areas were observed, although there are also many other factors which might affect the results. E.g. the local conditions and sources of volatile organic compounds (VOCs) and aerosols as well as various transformation processes are likely to have an impact on the measured aerosol composition. Using the source categories, it was identified that especially the oxidation products of biogenic VOCs in summer had a clear effect on WSOC concentrations

    Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes

    Get PDF
    Various studies report substantial increases in intrinsic water-use efficiency (Wi), estimated using carbon isotopes in tree rings, suggesting trees are gaining increasingly more carbon per unit water lost due to increases in atmospheric CO2. Usually, reconstructions do not, however, correct for the effect of intrinsic developmental changes in Wi as trees grow larger. Here we show, by comparingWi across varying tree sizes at one CO2 level, that ignoring such developmental effects can severely affect inferences of trees' Wi. Wi doubled or even tripled over a trees' lifespan in three broadleaf species due to changes in tree height and light availability alone, and there are also weak trends for Pine trees. Developmental trends in broadleaf species are as large as the trends previously assigned to CO2 and climate. Credible future tree ring isotope studies require explicit accounting for species-specific developmental effects before CO2 and climate effects are inferred.Peer reviewe

    An algebraic approach to the Tavis-Cummings problem

    Full text link
    An algebraic method is introduced for an analytical solution of the eigenvalue problem of the Tavis-Cummings (TC) Hamiltonian, based on polynomially deformed su(2), i.e. su_n(2), algebras. In this method the eigenvalue problem is solved in terms of a specific perturbation theory, developed here up to third order. Generalization to the N-atom case of the Rabi frequency and dressed states is also provided. A remarkable enhancement of spontaneous emission of N atoms in a resonator is found to result from collective effects.Comment: 13 pages, 7 figure
    • …
    corecore