5,467 research outputs found

    Energy-dependent partial-wave analysis of all antiproton-proton scattering data below 925 MeV/c

    Full text link
    We present a new energy-dependent partial-wave analysis of all antiproton-proton elastic and charge-exchange scattering data below 925 MeV/c antiproton laboratory momentum. The long-range parts of the chiral one- and two-pion exchange interactions are included exactly. The short-range interactions, including the coupling to the mesonic annihilation channels, are parametrized by a complex boundary condition at a radius of r=1.2 fm. The updated database, which includes significantly more high-quality charge-exchange data, contains 3749 scattering data. The fit results in chi^2_min/N_df=1.048, where N_df=3578 is the number of degrees of freedom. We discuss the description of the experimental data and we present the antiproton-proton phase-shift parameters

    Modelling decision tables from data.

    Get PDF
    On most datasets induction algorithms can generate very accurate classifiers. Sometimes, however, these classifiers are very hard to understand for humans. Therefore, in this paper it is investigated how we can present the extracted knowledge to the user by means of decision tables. Decision tables are very easy to understand. Furthermore, decision tables provide interesting facilities to check the extracted knowledge on consistency and completeness. In this paper, it is demonstrated how a consistent and complete DT can be modelled starting from raw data. The proposed method is empirically validated on several benchmarking datasets. It is shown that the modelling decision tables are sufficiently small. This allows easy consultation of the represented knowledge.Data;

    Coherent macroscopic quantum tunneling in boson-fermion mixtures

    Full text link
    We show that the cold atom systems of simultaneously trapped Bose-Einstein condensates (BEC's) and quantum degenerate fermionic atoms provide promising laboratories for the study of macroscopic quantum tunneling. Our theoretical studies reveal that the spatial extent of a small trapped BEC immersed in a Fermi sea can tunnel and coherently oscillate between the values of the separated and mixed configurations (the phases of the phase separation transition of BEC-fermion systems). We evaluate the period, amplitude and dissipation rate for 23^{23}Na and 40^{40}K-atoms and we discuss the experimental prospects for observing this phenomenon.Comment: 4 pages, 3 figure

    Lorentz violation in neutron and allowed nuclear beta decay

    Full text link
    We explore the possibility that the weak interaction violates Lorentz, and in particular rotational, invariance in neutron and allowed nuclear beta decay. A broad class of Lorentz-violating effects is considered, in which the standard propagator of the W-boson acquires an additional Lorentz-violating tensor. The general decay rate for allowed beta decay that incorporates such a modified propagator is derived. The resulting Lorentz-violating signals are discussed for the different types of beta-decay transitions, Fermi, Gamow-Teller, and mixed. We study the implications of our formalism for dedicated beta-decay experiments. We give a short overview of the few relevant experiments that have been performed or are ongoing.Comment: 23 pages; added reference

    Limits on Lorentz violation in neutral-Kaon decay

    Get PDF
    The KLOE collaboration recently reported bounds on the directional dependence of the lifetime of the short-lived neutral kaon K_S with respect to the cosmic microwave background dipole anisotropy. We interpret their results in a general framework developed to probe Lorentz violation in the weak interaction. In this approach a Lorentz-violating tensor \chi_{\mu\nu} is added to the standard propagator of the W boson. We derive the K_S decay rate in a naive tree-level model and calculate the asymmetry for the lifetime. By using the KLOE data the real vector part of \chi_{\mu\nu} is found to be smaller than 10^-2. We briefly discuss the theoretical challenges concerning nonleptonic decays.Comment: Presented at the Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 17-21, 2013

    Nuclear beta decay with Lorentz violation

    Get PDF
    We consider the possibility of Lorentz-invariance violation in weak-decay processes. We present a general approach that entails modifying the W-boson propagator by adding a Lorentz-violating tensor to it. We describe the effects of Lorentz violation on nuclear beta decay in this scenario. In particular we show the expression for a first-forbidden transition with a spin change of two. Using data from an old experiment on the rotational invariance of yttrium-90, we derive several bounds on the Lorentz-violating parameters of the order of 10^(-6)-10^(-8).Comment: 4 pages; presented at the Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 17-21, 2013; Added reference

    Symmetry violations in nuclear and neutron β\beta decay

    Get PDF
    The role of β\beta decay as a low-energy probe of physics beyond the Standard Model is reviewed. Traditional searches for deviations from the Standard Model structure of the weak interaction in β\beta decay are discussed in the light of constraints from the LHC and the neutrino mass. Limits on the violation of time-reversal symmetry in β\beta decay are compared to the strong constraints from electric dipole moments. Novel searches for Lorentz symmetry breaking in the weak interaction in β\beta decay are also included, where we discuss the unique sensitivity of β\beta decay to test Lorentz invariance. We end with a roadmap for future β\beta-decay experiments.Comment: Accepted for publication in Rev. Mod. Phys. 86 pages, 13 figure

    Testing Lorentz invariance in orbital electron capture

    Get PDF
    Searches for Lorentz violation were recently extended to the weak sector, in particular neutron and nuclear β\beta decay [1]. From experiments on forbidden β\beta-decay transitions strong limits in the range of 10−610^{-6}-10−810^{-8} were obtained on Lorentz-violating components of the WW-boson propagator [2]. In order to improve on these limits strong sources have to be considered. In this Brief Report we study isotopes that undergo orbital electron capture and allow experiments at high decay rates and low dose. We derive the expressions for the Lorentz-violating differential decay rate and discuss the options for competitive experiments and their required precision.Comment: accepted for publication as a Brief Report in Physical Review
    • …
    corecore