6 research outputs found
The Higgs Boson?
Please see submitted file
NeuroBench:Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking
The field of neuromorphic computing holds great promise in terms of advancing computing efficiency and capabilities by following brain-inspired principles. However, the rich diversity of techniques employed in neuromorphic research has resulted in a lack of clear standards for benchmarking, hindering effective evaluation of the advantages and strengths of neuromorphic methods compared to traditional deep-learning-based methods. This paper presents a collaborative effort, bringing together members from academia and the industry, to define benchmarks for neuromorphic computing: NeuroBench. The goals of NeuroBench are to be a collaborative, fair, and representative benchmark suite developed by the community, for the community. In this paper, we discuss the challenges associated with benchmarking neuromorphic solutions, and outline the key features of NeuroBench. We believe that NeuroBench will be a significant step towards defining standards that can unify the goals of neuromorphic computing and drive its technological progress. Please visit neurobench.ai for the latest updates on the benchmark tasks and metrics
NeuroBench: Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking
The field of neuromorphic computing holds great promise in terms of advancing
computing efficiency and capabilities by following brain-inspired principles.
However, the rich diversity of techniques employed in neuromorphic research has
resulted in a lack of clear standards for benchmarking, hindering effective
evaluation of the advantages and strengths of neuromorphic methods compared to
traditional deep-learning-based methods. This paper presents a collaborative
effort, bringing together members from academia and the industry, to define
benchmarks for neuromorphic computing: NeuroBench. The goals of NeuroBench are
to be a collaborative, fair, and representative benchmark suite developed by
the community, for the community. In this paper, we discuss the challenges
associated with benchmarking neuromorphic solutions, and outline the key
features of NeuroBench. We believe that NeuroBench will be a significant step
towards defining standards that can unify the goals of neuromorphic computing
and drive its technological progress. Please visit neurobench.ai for the latest
updates on the benchmark tasks and metrics
NeuroBench:A Framework for Benchmarking Neuromorphic Computing Algorithms and Systems
Neuromorphic computing shows promise for advancing computing efficiency and capabilities of AI applications using brain-inspired principles. However, the neuromorphic research field currently lacks standardized benchmarks, making it difficult to accurately measure technological advancements, compare performance with conventional methods, and identify promising future research directions. Prior neuromorphic computing benchmark efforts have not seen widespread adoption due to a lack of inclusive, actionable, and iterative benchmark design and guidelines. To address these shortcomings, we present NeuroBench: a benchmark framework for neuromorphic computing algorithms and systems. NeuroBench is a collaboratively-designed effort from an open community of nearly 100 co-authors across over 50 institutions in industry and academia, aiming to provide a representative structure for standardizing the evaluation of neuromorphic approaches. The NeuroBench framework introduces a common set of tools and systematic methodology for inclusive benchmark measurement, delivering an objective reference framework for quantifying neuromorphic approaches in both hardware-independent (algorithm track) and hardware-dependent (system track) settings. In this article, we present initial performance baselines across various model architectures on the algorithm track and outline the system track benchmark tasks and guidelines. NeuroBench is intended to continually expand its benchmarks and features to foster and track the progress made by the research community