31 research outputs found
Recommended from our members
Successful Supercooled Liver Storage for 4 Days
The realization of long–term human organ preservation will have groundbreaking effects on the current practice of transplantation. Herein we present a novel technique based on sub–zero non–freezing tissue preservation and extracorporeal machine perfusion that allows transplantation of rat livers preserved for up to 4 days, thereby tripling the viable preservation duration
Recommended from our members
Supercooling as a Viable Non-Freezing Cell Preservation Method of Rat Hepatocytes
Supercooling preservation holds the potential to drastically extend the preservation time of organs, tissues and engineered tissue products, and fragile cell types that do not lend themselves well to cryopreservation or vitrification. Here, we investigate the effects of supercooling preservation (SCP at -4oC) on primary rat hepatocytes stored in cryovials and compare its success (high viability and good functional characteristics) to that of static cold storage (CS at +4oC) and cryopreservation. We consider two prominent preservation solutions a) Hypothermosol (HTS-FRS) and b) University of Wisconsin solution (UW) and a range of preservation temperatures (-4 to -10 oC). We find that there exists an optimum temperature (-4oC) for SCP of rat hepatocytes which yields the highest viability; at this temperature HTS-FRS significantly outperforms UW solution in terms of viability and functional characteristics (secretions and enzymatic activity in suspension and plate culture). With the HTS-FRS solution we show that the cells can be stored for up to a week with high viability (~56%); moreover we also show that the preservation can be performed in large batches (50 million cells) with equal or better viability and no loss of functionality as compared to smaller batches (1.5 million cells) performed in cryovials
Metformin Preconditioning Improves Hepatobiliary Function and Reduces Injury in a Rat Model of Normothermic Machine Perfusion and Orthotopic Transplantation
Background. Preconditioning of donor livers before organ retrieval may improve organ quality after transplantation. We investigated whether preconditioning with metformin reduces preservation injury and improves hepatobiliary function in rat donor livers during ex situ normothermic machine perfusion (NMP) and after orthotopic liver transplantation. Methods. Lewis rats were administered metformin via oral gavage, after which a donor hepatectomy was performed followed by a standardized cold storage period of 4 hours. Graft assessment was performed using NMP via double perfusion of the hepatic artery and portal vein. In an additional experiment, rat donor livers preconditioned with metformin were stored on ice for 4 hours and transplanted to confirm postoperative liver function and survival. Data were analyzed and compared with sham-fed controls. Results. Graft assessment using NMP confirmed that preconditioning significantly improved ATP production, markers for hepatobiliary function (total bile production, biliary bilirubin, and bicarbonate), and significantly lowered levels of lactate, glucose, and apoptosis. After orthotopic liver transplantation, metformin preconditioning significantly reduced transaminase levels. Conclusions. Preconditioning with metformin lowers hepatobiliary injury and improves hepatobiliary function in an in situ and ex situ model of rat donor liver transplantation
Membrane-Lipid Therapy in Operation: The HSP Co-Inducer BGP-15 Activates Stress Signal Transduction Pathways by Remodeling Plasma Membrane Rafts
Aging and pathophysiological conditions are linked to membrane changes which modulate membrane-controlled molecular switches, causing dysregulated heat shock protein (HSP) expression. HSP co-inducer hydroxylamines such as BGP-15 provide advanced therapeutic candidates for many diseases since they preferentially affect stressed cells and are unlikely have major side effects. In the present study in vitro molecular dynamic simulation, experiments with lipid monolayers and in vivo ultrasensitive fluorescence microscopy showed that BGP-15 alters the organization of cholesterol-rich membrane domains. Imaging of nanoscopic long-lived platforms using the raft marker glycosylphosphatidylinositol-anchored monomeric green fluorescent protein diffusing in the live Chinese hamster ovary (CHO) cell plasma membrane demonstrated that BGP-15 prevents the transient structural disintegration of rafts induced by fever-type heat stress. Moreover, BGP-15 was able to remodel cholesterol-enriched lipid platforms reminiscent of those observed earlier following non-lethal heat priming or membrane stress, and were shown to be obligate for the generation and transmission of stress signals. BGP-15 activation of HSP expression in B16-F10 mouse melanoma cells involves the Rac1 signaling cascade in accordance with the previous observation that cholesterol affects the targeting of Rac1 to membranes. Finally, in a human embryonic kidney cell line we demonstrate that BGP-15 is able to inhibit the rapid heat shock factor 1 (HSF1) acetylation monitored during the early phase of heat stress, thereby promoting a prolonged duration of HSF1 binding to heat shock elements. Taken together, our results indicate that BGP-15 has the potential to become a new class of pharmaceuticals for use in ‘membrane-lipid therapy’ to combat many various protein-misfolding diseases associated with aging
Weak Glycolipid Binding of a Microdomain-Tracer Peptide Correlates with Aggregation and Slow Diffusion on Cell Membranes
10.1371/journal.pone.0051222PLoS ONE712
Functional outcome and patient satisfaction after flexor tenotomy for plantar ulcers of the toes
Ulcers of the toes may cause a severe physical burden, especially in patients with diabetes, in whom they occur most frequently. Several treatments have been proposed for the underlying anatomical abnormalities, but they vary in effectiveness. We evaluated our results in using flexor tenotomy to treat ulcers with underlying flexible clawing of the toes. For 42 toes from 23 patients, 15 of whom were diabetic, all ulcers healed. The mean healing time was 4 weeks (range, 1-8 weeks), the mean follow-up was 11 months (range, 1-27 months), and one recurrence and one complication occurred. Postoperative American Orthopaedic Foot Ankle Society Midfoot scores were available for 15 patients: the mean was 77 (range, 43-100). The mean visual analogue scale (VAS) for patient satisfaction increased from 3.9 points (range, 0-10 points) preoperatively to 7.7 (range, 5-10 points) postoperatively. Flexor tenotomy is a simple treatment with low complications and recurrence rates and provides good-to-excellent functional outcomes in treating flexible clawing of the toes and the associated ulceratio
Supercooling preservation and transplantation of the rat liver
The current standard for liver preservation involves cooling of the organ on ice (0-4 °C). Although it is successful for shorter durations, this method of preservation does not allow long-term storage of the liver. The gradual loss of hepatic viability during preservation puts pressure on organ sharing and allocation, may limit the use of suboptimal grafts and necessitates rushed transplantation to achieve desirable post-transplantation outcomes. In an attempt to improve and prolong liver viability during storage, alternative preservation methods are under investigation. For instance, ex vivo machine perfusion systems aim to sustain and even improve viability by supporting hepatic function at warm temperatures, rather than simply slowing down deterioration by cooling. Here we describe a novel subzero preservation technique that combines ex vivo machine perfusion with cryoprotectants to facilitate long-term supercooled preservation. The technique improves the preservation of rat livers to prolong storage times as much as threefold, which is validated by successful long-term recipient survival after orthotopic transplantation. This protocol describes how to load rat livers with cryoprotectants to prevent both intracellular and extracellular ice formation and to protect against hypothermic injury. Cryoprotectants are loaded ex vivo using subnormothermic machine perfusion (SNMP), after which livers can be cooled to -6 °C without freezing and kept viable for up to 96 h. Cooling to a supercooled state is controlled, followed by 3 h of SNMP recovery and orthotopic liver transplantatio