10 research outputs found

    LPS-induced Pellino3 degradation is mediated by p62-dependent autophagy

    Get PDF
    Background: In macrophages Toll-like receptor 4 (TLR4) is activated in response to lipopolysaccharide (LPS) and induces proinflammatory cytokine expression. Therefore, mechanisms terminating proinflammatory gene expression are important. Autophagy plays a central role in controlling innate immune responses by lysosomal degradation of signaling proteins, thus contributing to the resolution of inflammation. Autophagic proteins like p62 directly interact with molecules involved in the TLR4-signaling pathway, but a correlation with the IRAK E3 ligase and scaffold protein Pellino3 remains obscure. Hence, we are interested in elucidating the function of Pellino3 to prove our hypothesis that it is a key regulator in the TLR4-signaling cascade. Methods: We used the cecal ligation and puncture (CLP) mouse model causing polymicrobial sepsis to analyze Pellino3 protein and mRNA expression. Furthermore, we induced endotoxemia in RAW264.7 mouse macrophages by LPS treatment to verify in vivo experiments. Lentiviral Pellino3 knockdown in RAW264.7 macrophages was used for cytokine measurements at mRNA level. To analyze potential Pellino3 binding partners in TLR4-signaling by mass spectrometry (MS), we overexpressed FLAG-tagged Pellino3 in RAW264.7 macrophages, treated cells for 3, 6 and 24 hours with LPS and immunoprecipitated Pellino3 via its FLAG-tag. To consider Pellino3 degradation as a result of p62-mediated autophagy, we transiently knocked down p62 by siRNA in RAW264.7 macrophages and also pharmacologically blocked LPS-induced autophagy by Bafilomycin A1. Results: We demonstrated Pellino3 protein degradation in primary CD11b+ splenocytes after 24 hours following CLP operation and confirmed this in RAW264.7 macrophages after 24-hour LPS stimulation. Knockdown of Pellino3 attenuates proinflammatory cytokines, for example IL-6 mRNA, after 6 hours of LPS. Furthermore, we found by MS and verifying immunoprecipitation experiments that p62 is a Pellino3 binding partner, thus targeting Pellino3 for degradation. In line, both p62 knockdown and Bafilomycin A1 treatment prevent Pellino3 degradation, supporting an autophagic mechanism. Conclusion: Our observations highlight a regulatory role of Pellino3 on TLR4 signaling. Thus, antagonism of Pellino3 in the hyperinflammatory phase of sepsis may counteract the cytokine storm. Furthermore, stabilization of Pellino3 by inhibition of autophagy in the hypoinflammatory phase of sepsis may improve immunity. In consideration of these two conflictive sepsis phases, modulation of Pellino3 may provide a new strategy for the development of a therapy approach in sepsis

    Kinetic characterization of selective peroxisome-proliferator-activated receptor gamma modulators in vitro

    Get PDF
    Background: The ligand-activated transcription factor, peroxisome-proliferator-activated receptor gamma (PPARγ), has been shown to play an essential role in immunosuppression during sepsis. PPARγ is upregulated in T cells of septic patients, sensitizing these cells to PPARγ-dependent apoptosis and thus contributing to T-cell depletion. In the polymicrobial cecum ligation and puncture (CLP) sepsis model in mice, both T-cell-specific gene knockout (Lck-Cre PPARγfl/fl) and systemic pharmacological PPARγ antagonism by GW9662 improved survival. Because GW9662 was only effective when applied 3 hours after CLP, we were interested to extend this time frame. For this reason we characterized the kinetics of SPPARγMs when administered before or in combination with the agonist thiazolidinedione, rosiglitazone. Methods: A PPARγ-dependent transactivation assay was used in HEK293T cells. It is based on the vector pFA-PPARγ-LBD-GAL4-DBD encoding the hybrid protein PPARγ-LBD-GAL4-DBD and the reporter vector pFR-Luc, carrying a GAL4-responsive element in front of the Firefly luciferase gene. These two vectors were co-transfected, in combination with a control vector encoding Renilla luciferase (pRL-CMV) to normalize Firefly luciferase activity for transfection efficiency. Following transfection, cells were incubated with the SPPARγMs F-MOC and MCC-555 and the PPARγ antagonist GW9662 for different times (2 to 48 hours) and at increasing doses (0.01 to 10 μM), with or without rosiglitazone (0.01 to 10 μM). Transactivation was analyzed using a 96-well plate format. Results: Rosiglitazone transactivated PPARγ in a time-dependent and dose-dependent manner, the response gradually increasing to a maximum at 48 hours with 10 μM. Low concentrations (0.01 to 0.1 μM) of SPPARγMs F-MOC and MCC-555 and the PPARγ antagonist GW9662 all exerted dose-independent antagonistic effects at an early incubation time point (2 hours). From 10 hours onwards, MCC-555 and GW9662, given alone, both exerted PPARγ agonistic effects, MCC-555 in parallel to responses to rosiglitazone, but GW9662 with characteristics of partial antagonism. F-MOC showed no dose-dependent effect at any concentration at later time points. Only GW9662 (1 to 10 μM) was able to inhibit rosiglitazone (0.1 to 1 μM)-induced PPARγ transactivation after 10 hours. Conclusion: Our kinetic analysis reveals clear differences in the modulatory characteristics of PPARγ inhibitors, with previously unreported early inhibitory effects and late agonistic or partial agonistic activity. New SPPARγMs with extended inhibitory activity may prove useful in the therapy of sepsis

    Attenuated NOX2 expression impairs ROS production during the hypoinflammatory phase of sepsis

    Get PDF
    Background: The multicomponent phagocytic NADPH oxidase produces reactive oxygen species (ROS) after activation by microorganisms or inflammatory mediators. In the hypoinflammatory phase of sepsis, macrophages are alternatively activated by contact with apoptotic cells or their secretion products. This inhibits NADPH oxidase and leads to attenuated ROS production and furthermore contributes among others to a hyporeactive host defense. Due to this immune paralysis, sepsis patients suffer from recurrent and secondary infections. We focused on the catalytic subunit of NADPH oxidase, the transmembrane protein NOX2. We assume that after induction of sepsis the expression of NOX2 is reduced and hence ROS production is decreased. Methods: We induced polymicrobial sepsis in mice by cecal ligation and puncture. The ability of peritoneal macrophages (PMs) to produce ROS was determined by FACS via hydroethidine assay. NOX2 expression of PMs was determined by western blot and qPCR. To elucidate the mechanism causing mRNA destabilization, we performed in vitro experiments using J774 macrophages. To obtain an alternatively activated phenotype, macrophages were stimulated with conditioned medium from apoptotic T cells (CM). By luciferase assays we figured out a 3'UTR-dependent regulation of NOX2 mRNA stability. Assuming that a protein is involved in the mRNA degradation, we performed a RNA pulldown with biotinylated NOX2-3'UTR constructs followed by mass spectrometry. We verified the role of SYNCRIP by siRNA approach. Additionally, we overexpressed NOX2 in J774 cells and analyzed the ROS production (w/wo CM treatment) by FACS. Results: We found an impaired expression of NOX2 at RNA and protein level along with decreased ROS production after induction of sepsis in mice as well as stimulating J774 macrophages with CM of apoptotic T cells. This is due to a time-dependent NOX2 mRNA degradation depending on SYNCRIP, a RNA-binding protein, which stabilizes NOX2 mRNA through binding to its 3'UTR under normal conditions. In line, knockdown of SYNCRIP also decreases NOX2 mRNA expression. We assume that a CM-dependent modification or degradation of SYNCRIP prevents its stabilizing function. As the overexpression of NOX2 restores ROS production of CM-treated J774 cells, we assume that NOX2 expression is crucial for maintaining NADPH activity during the hypoinflammatory phase of sepsis. Conclusion: Our data imply a regulatory impact of SYNCRIP on NOX2 stability during the late phase of sepsis. Therefore, further understanding of the regulation of NADPH oxidase could lead to the design of a therapy to reconstitute NADPH oxidase function, finally improving immune function in sepsis patients

    RELSA—A multidimensional procedure for the comparative assessment of well-being and the quantitative determination of severity in experimental procedures

    Get PDF
    Good science in translational research requires good animal welfare according to the principles of 3Rs. In many countries, determining animal welfare is a mandatory legal requirement, implying a categorization of animal suffering, traditionally dominated by subjective scorings. However, how such methods can be objectified and refined to compare impairments between animals, subgroups, and animal models remained unclear. Therefore, we developed the RELative Severity Assessment (RELSA) procedure to establish an evidence-based method based on quantitative outcome measures such as body weight, burrowing behavior, heart rate, heart rate variability, temperature, and activity to obtain a relative metric for severity comparisons. The RELSA procedure provided the necessary framework to get severity gradings in TM-implanted mice, yielding four distinct RELSA thresholds L1<0.27, L2<0.59, L3<0.79, and L4<3.45. We show further that severity patterns in the contributing variables are time and model-specific and use this information to obtain contextualized between animal-model and subgroup comparisons with the severity of sepsis > surgery > restraint stress > colitis. The bootstrapped 95% confidence intervals reliably show that RELSA estimates are conditionally invariant against missing information but precise in ranking the quantitative severity information to the moderate context of the transmitter-implantation model. In conclusion, we propose the RELSA as a validated tool for an objective, computational approach to comparative and quantitative severity assessment and grading. The RELSA procedure will fundamentally improve animal welfare, data quality, and reproducibility. It is also the first step toward translational risk assessment in biomedical research

    Tolerizing CTL by sustained hepatic PD-L1 expression provides a new therapy approach in mouse sepsis

    No full text
    Cytotoxic T lymphocyte (CTL) activation contributes to liver damage during sepsis, but the mechanisms involved are largely unknown. Understanding the underlying principle will permit interference with CTL activation and thus, provide a new therapeutic option. Methods: To elucidate the mechanism leading to CTL activation we used the Hepa1-6 cell line in vitro and the mouse model of in vivo polymicrobial sepsis, following cecal-ligation and -puncture (CLP) in wildtype, myeloid specific NOX-2, global NOX2 and NOX4 knockout mice, and their survival as a final readout. In this in vivo setting, we also determined hepatic mRNA and protein expression as well as clinical parameters of liver damage - aspartate- and alanine amino-transaminases. Hepatocyte specific overexpression of PD-L1 was achieved in vivo by adenoviral infection and transposon-based gene transfer using hydrodynamic injection. Results: We observed downregulation of PD-L1 on hepatocytes in the murine sepsis model. Adenoviral and transposon-based gene transfer to restore PD-L1 expression, significantly improved survival and reduced the release of liver damage, as PD-L1 is a co-receptor that negatively regulates T cell function. Similar protection was observed during pharmacological intervention using recombinant PD-L1-Fc. N-acetylcysteine blocked the downregulation of PD-L1 suggesting the involvement of reactive oxygen species. This was confirmed in vivo, as we observed significant upregulation of PD-L1 expression in NOX4 knockout mice, following sham operation, whereas its expression in global as well as myeloid lineage NOX2 knockout mice was comparable to that in the wild type animals. PD-L1 expression remained high following CLP only in total NOX2 knockouts, resulting in significantly reduced release of liver damage markers. Conclusion: These results suggest that, contrary to common assumption, maintaining PD-L1 expression on hepatocytes improves liver damage and survival of mice during sepsis. We conclude that administering recombinant PD-L1 or inhibiting NOX2 activity might offer a new therapeutic option in sepsis

    Tolerizing CTL by sustained hepatic PD-L1 expression provides a new therapy spproach in mouse sepsis

    No full text
    Cytotoxic T lymphocyte (CTL) activation contributes to liver damage during sepsis, but the mechanisms involved are largely unknown. Understanding the underlying principle will permit interference with CTL activation and thus, provide a new therapeutic option. Methods: To elucidate the mechanism leading to CTL activation we used the Hepa1-6 cell line in vitro and the mouse model of in vivo polymicrobial sepsis, following cecal-ligation and -puncture (CLP) in wildtype, myeloid specific NOX-2, global NOX2 and NOX4 knockout mice, and their survival as a final readout. In this in vivo setting, we also determined hepatic mRNA and protein expression as well as clinical parameters of liver damage - aspartate- and alanine amino-transaminases. Hepatocyte specific overexpression of PD-L1 was achieved in vivo by adenoviral infection and transposon-based gene transfer using hydrodynamic injection. Results: We observed downregulation of PD-L1 on hepatocytes in the murine sepsis model. Adenoviral and transposon-based gene transfer to restore PD-L1 expression, significantly improved survival and reduced the release of liver damage, as PD-L1 is a co-receptor that negatively regulates T cell function. Similar protection was observed during pharmacological intervention using recombinant PD-L1-Fc. N-acetylcysteine blocked the downregulation of PD-L1 suggesting the involvement of reactive oxygen species. This was confirmed in vivo, as we observed significant upregulation of PD-L1 expression in NOX4 knockout mice, following sham operation, whereas its expression in global as well as myeloid lineage NOX2 knockout mice was comparable to that in the wild type animals. PD-L1 expression remained high following CLP only in total NOX2 knockouts, resulting in significantly reduced release of liver damage markers. Conclusion: These results suggest that, contrary to common assumption, maintaining PD-L1 expression on hepatocytes improves liver damage and survival of mice during sepsis. We conclude that administering recombinant PD-L1 or inhibiting NOX2 activity might offer a new therapeutic option in sepsis
    corecore