6,553 research outputs found
SSME structural dynamic model development
A mathematical model of the Space Shuttle Main Engine (SSME) as a complete assembly, with detailed emphasis on LOX and High Fuel Turbopumps is developed. The advantages of both complete engine dynamics, and high fidelity modeling are incorporated. Development of this model, some results, and projected applications are discussed
An AI approach for scheduling space-station payloads at Kennedy Space Center
The Payload Processing for Space-Station Operations (PHITS) is a prototype modeling tool capable of addressing many Space Station related concerns. The system's object oriented design approach coupled with a powerful user interface provide the user with capabilities to easily define and model many applications. PHITS differs from many artificial intelligence based systems in that it couples scheduling and goal-directed simulation to ensure that on-orbit requirement dates are satisfied
Tracking ocean wave spectrum from SAR images
An end to end algorithm for recovery of ocean wave spectral peaks from Synthetic Aperture Radar (SAR) images is described. Current approaches allow precisions of 1 percent in wave number, and 0.6 deg in direction
Gravitational waves in preheating
We study the evolution of gravitational waves through the preheating era that
follows inflation. The oscillating inflaton drives parametric resonant growth
of scalar field fluctuations, and although super-Hubble tensor modes are not
strongly amplified, they do carry an imprint of preheating. This is clearly
seen in the Weyl tensor, which provides a covariant description of
gravitational waves.Comment: 8 pages, 8 figures, Revte
(Giant) Vortex - (anti) vortex interaction in bulk superconductors: The Ginzburg-Landau theory
The vortex-vortex interaction potential in bulk superconductors is calculated
within the Ginzburg-Landau (GL) theory and is obtained from a numerical
solution of a set of two coupled non-linear GL differential equations for the
vector potential and the superconducting order parameter, where the merger of
vortices into a giant vortex is allowed. Further, the interaction potentials
between a vortex and a giant vortex and between a vortex and an antivortex are
obtained for both type-I and type-II superconductors. Our numerical results
agree asymptotically with the analytical expressions for large inter-vortex
separations which are available in the literature. We propose new empirical
expressions valid over the full interaction range, which are fitted to our
numerical data for different values of the GL parameter
Anisotropic Thermal Conduction in Supernova Remnants: Relevance to Hot Gas Filling Factors in the Magnetized ISM
We explore the importance of anisotropic thermal conduction in the evolution
of supernova remnants via numerical simulations. The mean temperature of the
bubble of hot gas is decreased by a factor of ~3 compared to simulations
without thermal conduction, together with an increase in the mean density of
hot gas by a similar factor. Thus, thermal conduction greatly reduces the
volume of hot gas produced over the life of the remnant. This underscores the
importance of thermal conduction in estimating the hot gas filling fraction and
emissivities in high-stage ions in Galactic and proto-galactic ISMs.Comment: Submitted to Astrophysical Journal Letters. 4 pages, 3 figure
Recommended from our members
The tarantula toxin GxTx detains K+ channel gating charges in their resting conformation.
Allosteric ligands modulate protein activity by altering the energy landscape of conformational space in ligand-protein complexes. Here we investigate how ligand binding to a K+ channel's voltage sensor allosterically modulates opening of its K+-conductive pore. The tarantula venom peptide guangxitoxin-1E (GxTx) binds to the voltage sensors of the rat voltage-gated K+ (Kv) channel Kv2.1 and acts as a partial inverse agonist. When bound to GxTx, Kv2.1 activates more slowly, deactivates more rapidly, and requires more positive voltage to reach the same K+-conductance as the unbound channel. Further, activation kinetics are more sigmoidal, indicating that multiple conformational changes coupled to opening are modulated. Single-channel current amplitudes reveal that each channel opens to full conductance when GxTx is bound. Inhibition of Kv2.1 channels by GxTx results from decreased open probability due to increased occurrence of long-lived closed states; the time constant of the final pore opening step itself is not impacted by GxTx. When intracellular potential is less than 0 mV, GxTx traps the gating charges on Kv2.1's voltage sensors in their most intracellular position. Gating charges translocate at positive voltages, however, indicating that GxTx stabilizes the most intracellular conformation of the voltage sensors (their resting conformation). Kinetic modeling suggests a modulatory mechanism: GxTx reduces the probability of voltage sensors activating, giving the pore opening step less frequent opportunities to occur. This mechanism results in K+-conductance activation kinetics that are voltage-dependent, even if pore opening (the rate-limiting step) has no inherent voltage dependence. We conclude that GxTx stabilizes voltage sensors in a resting conformation, and inhibits K+ currents by limiting opportunities for the channel pore to open, but has little, if any, direct effect on the microscopic kinetics of pore opening. The impact of GxTx on channel gating suggests that Kv2.1's pore opening step does not involve movement of its voltage sensors
The ISIS synchrotron beam control and study programme
Progress on the beam control and study programme for the 800 MeV High Intensity Proton Synchrotron of the Spallation Neutron Source ISIS, is outlined. Recent hardware upgrades to diagnostics, instrumentation and computing have increased the amount, accuracy and availability of beam information. The measurement methods employed and their planned applications for beam control, optimisation and study are described. Work includes detailed study of longitudinal and transverse dynamics at high and low intensity. Results obtained so far and future plans are summarised. (6 refs)
- …
