8 research outputs found

    Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission

    Get PDF
    iGluSnFR variants with improved signal-to-noise ratios and targeting to postsynaptic sites have been developed, enabling the analysis of glutamatergic neurotransmission in vivo as illustrated in the mouse visual and somatosensory cortex. The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines

    Rapid reconstruction of neural circuits using tissue expansion and light sheet microscopy

    No full text
    Brain function is mediated by the physiological coordination of a vast, intricately connected network of molecular and cellular components. The physiological properties of neural network components can be quantified with high throughput. The ability to assess many animals per study has been critical in relating physiological properties to behavior. By contrast, the synaptic structure of neural circuits is presently quantifiable only with low throughput. This low throughput hampers efforts to understand how variations in network structure relate to variations in behavior. For neuroanatomical reconstruction, there is a methodological gulf between electron microscopic (EM) methods, which yield dense connectomes at considerable expense and low throughput, and light microscopic (LM) methods, which provide molecular and cell-type specificity at high throughput but without synaptic resolution. To bridge this gulf, we developed a high-throughput analysis pipeline and imaging protocol using tissue expansion and light sheet microscopy (ExLLSM) to rapidly reconstruct selected circuits across many animals with single-synapse resolution and molecular contrast. Using Drosophila to validate this approach, we demonstrate that it yields synaptic counts similar to those obtained by EM, enables synaptic connectivity to be compared across sex and experience, and can be used to correlate structural connectivity, functional connectivity, and behavior. This approach fills a critical methodological gap in studying variability in the structure and function of neural circuits across individuals within and between species.ISSN:2050-084

    EASI-FISH example data (multi-round FISH, round 4)

    No full text
    Example dataset that can be used for testing the EASI-FISH (Expansion-Assisted Iterative Fluorescence in situ hybridization) data analysis pipeline (https://github.com/JaneliaSciComp/multifish). Raw image data (.czi) and metadata (.mvl) are provided here. Image data was collected using a Zeiss Lightsheet Z.1 microscope. A 20× water-immersion objective (RI=1.33) was used for imaging with 1× zoom. Single-side illumination was used to reduce light exposure and imaging time. Overlap between tiles was set to 8%. Voxel size (µm): 0.23 x 0.23 x 0.42 (x, y, z). This dataset can be used with EASI-FISH example datasets (multi-round FISH, round 3 and round 5) (https://doi.org/10.25378/janelia.13622819; https://doi.org/10.25378/janelia.13622828) for registration testing. LHA3_R4_small (12GB): Two image tiles are included in a single CZI file, with 2 channels (1 FISH channel and 1 DAPI channel). Channel1: 488 (Calb2), channel 2: 405 (DAPI) and image dimension per tile: 1920 x 1920 x 413 (x, y, z). </p

    Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission

    Get PDF
    The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.ISSN:1548-7105ISSN:1548-709

    Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems

    No full text
    Methods for highly multiplexed RNA imaging are limited in spatial resolution and thus in their ability to localize transcripts to nanoscale and subcellular compartments. We adapt expansion microscopy, which physically expands biological specimens, for long-read untargeted and targeted in situ RNA sequencing. We applied untargeted expansion sequencing (ExSeq) to the mouse brain, which yielded the readout of thousands of genes, including splice variants. Targeted ExSeq yielded nanoscale-resolution maps of RNAs throughout dendrites and spines in the neurons of the mouse hippocampus, revealing patterns across multiple cell types, layer-specific cell types across the mouse visual cortex, and the organization and position-dependent states of tumor and immune cells in a human metastatic breast cancer biopsy. Thus, ExSeq enables highly multiplexed mapping of RNAs from nanoscale to system scale
    corecore