843 research outputs found
Information and Communication Technologies in the Teaching of Interpreting
AbstractThis article is devoted to the features of training oral consecutive interpreting for language students of the Department of Chinese. It is focused on a competence-based approach to education and takes into account the linguistic and cultural characteristics of the Chinese language. This is also the ability to use information and communication technologies in teaching this kind of activity as opportunities to improve knowledge in the field of interpretation, not only in the learning process, but also for future professional activity
Bright squeezed vacuum in a nonlinear interferometer: frequency/temporal Schmidt-mode description
Control over the spectral properties of the bright squeezed vacuum (BSV), a
highly multimode non-classical macroscopic state of light that can be generated
through high-gain parametric down conversion, is crucial for many applications.
In particular, in several recent experiments BSV is generated in a strongly
pumped SU(1,1) interferometer to achieve phase supersensitivity, perform
broadband homodyne detection, or tailor the frequency spectrum of squeezed
light. In this work, we present an analytical approach to the theoretical
description of BSV in the frequency domain based on the Bloch-Messiah reduction
and the Schmidt-mode formalism. As a special case we consider a strongly pumped
SU(1,1) interferometer. We show that different moments of the radiation at its
output depend on the phase, dispersion and the parametric gain in a nontrivial
way, thereby providing additional insights on the capabilities of nonlinear
interferometers. In particular, a dramatic change in the spectrum occurs as the
parametric gain increases
Properties of bright squeezed vacuum at increasing brightness
A bright squeezed vacuum (BSV) is a nonclassical macroscopic state of light, which is generated through high-gain parametric down-conversion or four-wave mixing. Although the BSV is an important tool in quantum optics and has a lot of applications, its theoretical description is still not complete. In particular, the existing description in terms of Schmidt modes with gain-independent shapes fails to explain the spectral broadening observed in the experiment as the mean number of photons increases. Meanwhile, the semiclassical description accounting for the broadening does not allow us to decouple the intermodal photon-number correlations. In this work, we present a new generalized theoretical approach to describe the spatial properties of a multimode BSV. In the multimode case, one has to take into account the complicated interplay between all involved modes: each plane-wave mode interacts with all other modes, which complicates the problem significantly. The developed approach is based on exchanging the (k, t ) and (Ο, z) representations and solving a system of integrodifferential equations. Our approach predicts correctly the dynamics of the Schmidt modes and the broadening of the angular distribution with the increase in the BSV mean photon number due to a stronger pumping. Moreover, the model correctly describes various properties of a widely used experimental configuration with two crystals and an air gap between them, namely, an SU(1,1) interferometer. In particular, it predicts the narrowing of the intensity distribution, the reduction and shift of the side lobes, and the decline in the interference visibility as the mean photon number increases due to stronger pumping. The presented experimental results confirm the validity of the new approach. The model can be easily extended to the case of the frequency spectrum, frequency Schmidt modes, and other experimental configurations
Projective filtering of a single spatial radiation eigenmode
Lossless filtering of a single coherent (Schmidt) mode from spatially
multimode radiation is a problem crucial for optics in general and for quantum
optics in particular. It becomes especially important in the case of
nonclassical light that is fragile to optical losses. An example is bright
squeezed vacuum generated via high-gain parametric down conversion or four-wave
mixing. Its highly multiphoton and multimode structure offers a huge increase
in the information capacity provided that each mode can be addressed
separately. However, the nonclassical signature of bright squeezed vacuum,
photon-number correlations, are highly susceptible to losses. Here we
demonstrate lossless filtering of a single spatial Schmidt mode by projecting
the spatial spectrum of bright squeezed vacuum on the eigenmode of a
single-mode fiber. Moreover, we show that the first Schmidt mode can be
captured by simply maximizing the fiber-coupled intensity. Importantly, the
projection operation does not affect the targeted mode and leaves it usable for
further applications.Comment: 10 pages, 9 figure
Kinetics of grain refinemet in metallic materials during large strain deformation
The development of ultrafine grained microstructures in austenitic stainless steel and pure titanium subjected to large strain deformation was comparatively studied. The change in the volume fractions of newly developed ultrafine grains was used to quantify the progress in grain refinement during plastic deformatio
Consecutive interpreting training in groups of foreign students by means of LCT and ICT technologies
This paper focuses on teaching consecutive interpreting to foreign students (in Chinese-English language pair), by means of the use of new linguistic computer technologies (LCT) and information and communication technologies (ICT). These include: Moodle, MOOC, Flipped classroom, Tag cloud, Scratch, which have the potential to train and develop skills not only directly in the process of education, but also over the further professional life, regardless of the location of future linguists and interpreters
- β¦