6 research outputs found

    A systematic literature review of climate change research on Europe's threatened commercial fish species

    Get PDF
    Climate change poses a major challenge for global marine ecosystems and species, leading to a wide range of biological and social-ecological impacts. Fisheries are among the well-known sectors influenced by multiple effects of climate change, with associated impacts highly variable among species and regions. To successfully manage fisheries, scientific evidence about the potential direct and indirect impacts of climate change on the species targeted by fisheries is needed to inform decision-making processes. This is particularly pertinent for fisheries within European seas, as they include some of the fastest warming water bodies globally, and are thus experiencing some of the greatest impacts. Here, we systematically examine the existing scientific climate-related literature of 68 species that are both commercially important in European seas and considered threatened ac-cording to the IUCN Red List to understand the extent of information that is available to inform fisheries management and identify critical knowledge gaps that can help to direct future research effort. We also explore the climate and fishing vulnerability indices of species as potential drivers of current scientific attention. We found no literature for most of these species (n = 45), and for many others (n = 19) we found fewer than five papers studying them. Climate change related research was dominated by a few species (i.e., Atlantic salmon, European pilchard, and Atlantic bluefin tuna) and regions, such as the Northeast Atlantic, revealing a highly uneven distribution of research efforts across European seas. Most studies were biologically focused and included how abundance, distribution, and physiology may be affected by warming. Few studies incorporated some level of social-ecological information. Moreover, it appears that research on species with high climate and fishing vulnerabilities is not currently prioritized. These results highlight a gap in our understanding of how climate change can impact already threatened species and the people who depend on them for food and income. Our findings also suggest that future climate-specific adaptation measures will likely suffer from a lack of robust information. More research is needed to include all the species from our list, their relevant geographic regions, and subsequent biological and social-ecological implications.La Caixa Foundation LCF/BQ/DI21/11860039, LA/P/0101/2020, ID 100010434info:eu-repo/semantics/publishedVersio

    An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea

    No full text
    Fire corals of the hydrocoral genus Millepora provide an important ecological role as framework builders of coral reefs in the Indo-Pacific and the Atlantic. Recent works have demonstrated the incongruence between molecular data and the traditional taxonomy of Millepora spp. based on overall skeleton growth form and pores. In an attempt to establish a reliable and standardized approach for defining species boundaries in Millepora, we focused on those from the Red Sea. In this region, three species are currently recognized: the fan-shaped branching M. dichotoma, the blade-like M. platyphylla, and the massive/encrusting M. exaesa. A total of 412 colonies were collected from six localities. Two mitochondrial marker genes (COI and 16S rDNA) were sequenced to obtain phylogeny reconstructions and haplotype networks. Eight morphological traits of pores and the nematocysts of both polyp and eumedusoid stages were measured to determine whether significant morphological differences occur among the three species. Both markers clearly resolved M. dichotoma, M. platyphylla, and M. exaesa as distinct, monophyletic lineages in the Red Sea. Nevertheless, they also revealed deep genetic breaks with Southwestern Indian Ocean populations of the three species. In the Red Sea, the three species were further distinguished based on their pore and nematocyst features. A discriminant analysis revealed dactylopore density, number of dactylopores per gastropore, dactylopore distance, and gastropore diameter as the most informative discriminative characters. The heteronemes, the large and small stenoteles of polyps, and the distribution of mastigophores of eumedusoids also showed significant interspecific differences. An integrated morpho-molecular approach proved to be decisive in defining species boundaries of Millepora supported by a combination of pore and nematocyst characters, which may be phylogenetically informative

    Genomic diversification of giant enteric symbionts reflects host dietary lifestyles

    No full text
    Herbivorous surgeonfishes are an ecologically successful group of reef fish that rely on marine algae as their principal food source. Here, we elucidated the significance of giant enteric symbionts colonizing these fishes regarding their roles in the digestive processes of hosts feeding predominantly on polysiphonous red algae and brown Turbinaria algae, which contain different polysaccharide constituents. Using metagenomics, single-cell genomics, and metatranscriptomic analyses, we provide evidence of metabolic diversification of enteric microbiota involved in the degradation of algal biomass in these fishes. The enteric microbiota is also phylogenetically and functionally simple relative to the complex lignocellulose-degrading microbiota of terrestrial herbivores. Over 90% of the enzymes for deconstructing algal polysaccharides emanate from members of a single bacterial lineage, "Candidatus Epulopiscium" and related giant bacteria. These symbionts lack cellulases but encode a distinctive and lineage-specific array of mostly intracellular carbohydrases concurrent with the unique and tractable dietary resources of their hosts. Importantly, enzymes initiating the breakdown of the abundant and complex algal polysaccharides also originate from these symbionts. These are also highly transcribed and peak according to the diel lifestyle of their host, further supporting their importance and host-symbiont cospeciation. Because of their distinctive genomic blueprint, we propose the classification of these giant bacteria into three candidate genera. Collectively, our findings show that the acquisition of metabolically distinct "Epulopiscium" symbionts in hosts feeding on compositionally varied algal diets is a key niche-partitioning driver in the nutritional ecology of herbivorous surgeonfishes
    corecore