632 research outputs found
Experimental study of the Ca2 1S+1S asymptote
The filtered laser excitation technique was applied for measuring transition
frequencies of the Ca B-X system from asymptotic levels of the
X ground state reaching . That level has an
outer classical turning point of about 20~\AA which is only 0.2 \rcm below the
molecular SS asymptote. Extensive analysis of the spectroscopic data,
involving Monte Carlo simulation, allowed for a purely experimental
determination of the long range parameters of the potential energy curve. The
possible values of the s-wave scattering length could be limited to be between
250 and 1000.Comment: 10 pages, 7 figure
Fourier-transform spectroscopy of Sr2 and revised ground state potential
Precise potentials for the ground state X1Sigma+g and the minimum region of
the excited state 2_1Sigma+u of Sr2 are derived by high resolution
Fourier-transform spectroscopy of fluorescence progressions from single
frequency laser excitation of Sr2 produced in a heat pipe at 950 Celsius. A
change of the rotational assignment by four units compared to an earlier work
(G. Gerber, R. M\"oller, and H. Schneider, J. Chem. Phys. 81, 1538 (1984)) is
needed for a consistent description leading to a significant shift of the
potentials towards longer inter atomic distances. The huge amount of ground
state data derived for the three different isotopomers 88Sr2, 86Sr88Sr and
87Sr88Sr (almost 60% of all excisting bound rovibrational ground state levels
for the isotopomer 88Sr2) fixes this assignment undoubtedly. The presented
ground state potential is derived from the observed transitions for the radial
region from 4 to 11 A (9 cm-1 below the asymptote) and is extended to the longe
range region by the use of theoretical dispersion coefficients together with
already available photoassociation data. New estimations of the scattering
lengths for the complete set of isotopic combinations are derived by mass
scaling with the derived potential. The data set for the excited state
2_1Sigma+u was sufficient to derive a potential energy curve around the
minimum.Comment: 10 pages, 7 figures, some small corrections done especially to the
potential description of the excited state (already included in the published
journal version
Strategies for the analysis of osteitic bone defects at the diaphysis of long bones
Septic diseases of the bone and the immediate surrounding soft tissue, i.e., osteitis, belong to the most alarming findings in recent traumatology and orthopedic surgery. The paramount goal of this therapy is to preserve the stable weight-bearing bones while maintaining a correct axis and proper working muscles and joints, in order to avoid permanent disability in the patient. “State-of-the-art” therapy of osteitis/osteomyelitis therapy has two priorities: eradication of the infection and reconstruction of bone and soft tissue. Surgical treatment of the affected bone segments and soft tissue, followed by reconstructive methods, continues to be the main basic therapy. It is often extremely difficult to decide whether the affected bone segment has to be resected, or whether bone continuity can be preserved. The following paper provides strategies and guidance to help guide decisions in this complex and challenging area
The potential of the ground state of NaRb
The X state of NaRb was studied by Fourier transform
spectroscopy. An accurate potential energy curve was derived from more than
8800 transitions in isotopomers NaRb and NaRb. This
potential reproduces the experimental observations within their uncertainties
of 0.003 \rcm to 0.007 \rcm. The outer classical turning point of the last
observed energy level (, ) lies at \AA, leading
to a energy of 4.5 \rcm below the ground state asymptote.Comment: 8 pages, 6 figures and 2 table
The coupling of the X and a states of KRb
A comprehensive study of the electronic states at the 4s+5s asymptote in KRb
is presented. Abundant spectroscopic data on the \astate state were collected
by Fourier-transform spectroscopy which allow to determine an accurate
experimental potential energy curve up to 14.8 \AA . The existing data set (C.
Amiot et al. J. Chem. Phys. 112, 7068 (2000)) on the ground state \Xstate was
extended by several additional levels lying close to the atomic asymptote. In a
coupled channels fitting routine complete molecular potentials for both
electronic states were fitted. Along with the line frequencies of the molecular
transitions, recently published positions of Feshbach resonances in K
and Rb mixtures (F. Ferlaino et al. Phys. Rev. A 74, 039903 (2006)) were
included in the fit. This makes the derived potential curves capable for an
accurate description of observed cold collision features so far. Predictions of
scattering lengths and Feshbach resonances in other isotopic combinations are
reported.Comment: 14 pages, 5 figure
Feshbach spectroscopy and analysis of the interaction potentials of ultracold sodium
We have studied magnetic Feshbach resonances in an ultracold sample of Na
prepared in the absolute hyperfine ground state. We report on the observation
of three s-, eight d-, and three g-wave Feshbach resonances, including a more
precise determination of two known s-wave resonances, and one s-wave resonance
at a magnetic field exceeding 200mT. Using a coupled-channels calculation we
have improved the sodium ground-state potentials by taking into account these
new experimental data, and derived values for the scattering lengths. In
addition, a description of the molecular states leading to the Feshbach
resonances in terms of the asymptotic-bound-state model is presented.Comment: 11 pages, 4 figure
Study of coupled states for the (4s^{2})^{1}S + (4s4p)^{3}P asymptote of Ca_{2}
The coupled states A^{1}\Sigma_{u}^{+} (^{1}D +}1}S), c^{3}\Pi_{u} (^{3}P +
^{1}S) and a^{3}\Sigma_{u}^{+} (^{3}P +}1}S) of the calcium dimer are
investigated in a laser induced fluorescence experiment combined with
high-resolution Fourier-transform spectroscopy. A global deperturbation
analysis of the observed levels, considering a model, which is complete within
the subspace of relevant neighboring states, is performed using the Fourier
Grid Hamiltonian method. We determine the potential energy curve of the
A^{1}\Sigma_{u}^{+} and c^{3}\Pi_{u} states and the strengths of the couplings
between them. The c^{3}\Pi_{u} and \as states are of particular importance for
the description of collisional processes between calcium atoms in the ground
state ^{1}S_{0} and excited state ^{3}P_{1} applied in studies for establishing
an optical frequency standard with Ca.Comment: 15 pages, 12 figure
Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs
The objective of this study was to test whether the use of tannin-rich shrub legume forage is advantageous for methane mitigation and metabolic protein supply at unchanged energy supply when supplemented in combination with tannin-free legumes to sheep. In a 6 × 6 Latin-square design, foliage of two tannin-rich shrub legume species (Calliandra calothyrsus and Flemingia macrophylla) were used to replace either 1/3 or 2/3, respectively, of a herbaceous high-quality legume (Vigna unguiculata) in a diet composed of the tropical grass Brachiaria brizantha and Vigna in a ratio of 0.55 : 0.45. A Brachiaria-only diet served as the negative control. Each experimental period lasted for 28 days, with week 3 serving for balance measurement and data collection inclusive of a 2-day stay of the sheep in open-circuit respiration chambers for measurement of gaseous exchange. While Vigna supplementation improved protein and energy utilisation, the response to the partial replacement with tannin-rich legumes was less clear. The apparent total tract digestibilities of organic matter, NDF and ADF were reduced when the tannin-rich plants partially replaced Vigna, and the dose-response relationships were mainly linear. The tannin-rich plants caused the expected redistribution of more faecal N in relation to urinary N. While Flemingia addition still led to a net body N retention, even when fed at the higher proportion, adding higher amounts of Calliandra resulted in body protein mobilisation in the growing lambs. With respect to energy, supplementation of Vigna alone improved utilisation, while this effect was absent when a tannin-rich plant was added. The inclusion of the tannin-rich plants reduced methane emission per day and per unit of feed and energy intake by up to 24% relative to the Vigna-only-supplemented diet, but this seems to have been mostly the result of a reduced organic matter and fibre digestion. In conclusion, Calliandra seems less apt as protein supplement for ruminants while Flemingia could partially replace a high-quality legume in tropical livestock systems. However, methane mitigation would be small due to associated reductions in N and energy retentio
The X and a states of LiCs studied by Fourier-transform spectroscopy
We present the first high-resolution spectroscopic study of LiCs. LiCs is
formed in a heat pipe oven and studied via laser-induced fluorescence
Fourier-transform spectroscopy. By exciting molecules through the
X-B and X-D transitions vibrational
levels of the X ground state have been observed up to 3cm^{-1}
below the dissociation limit enabling an accurate construction of the
potential. Furthermore, rovibrational levels in the a triplet
ground state have been observed because the excited states obtain sufficient
triplet character at the corresponding excited atomic asymptote. With the help
of coupled channels calculations accurate singlet and triplet ground state
potentials were derived reaching the atomic ground state asymptote and allowing
first predictions of cold collision properties of Li + Cs pairs.Comment: 10 pages, 5 figures. Submitted for publicatio
- …