85 research outputs found

    Ultrafast electronic heat dissipation through surface-to-bulk Coulomb coupling in quantum materials

    Get PDF
    The timescale of electronic cooling is an important parameter controlling the performance of devices based on quantum materials for optoelectronic, thermoelectric and thermal management applications. In most conventional materials, cooling proceeds via the emission of phonons, a relatively slow process that can bottleneck the carrier relaxation dynamics, thus degrading the device performance. Here we present the theory of near-field radiative heat transfer, that occurs when a two-dimensional electron system is coupled via the non-retarded Coulomb interaction to a three-dimensional bulk that can behave as a very efficient electronic heat sink. We apply our theory to study the cooling dynamics of surface states of three dimensional topological insulators, and of graphene in proximity to small-gap bulk materials. The ``Coulomb cooling'' we introduce is alternative to the conventional phonon-mediated cooling, can be very efficient and dominate the cooling dynamics under certain circumstances. We show that this cooling mechanism can lead to a sub-picosecond time scale, significantly faster than the cooling dynamics normally observed in Dirac materials.Comment: 10 pages, 4 figure

    Terahertz Nonlinear Optics of Graphene: From Saturable Absorption to High-Harmonics Generation

    Get PDF
    Eid HAH, Kovalev S, Tielrooij K-J, Bonn M, Gensch M, Turchinovich D. Terahertz Nonlinear Optics of Graphene: From Saturable Absorption to High-Harmonics Generation. Advanced optical matierals. 2020;8(3): 1900771.Graphene has long been predicted to show exceptional nonlinear optical properties, especially in the technologically important terahertz (THz) frequency range. Recent experiments have shown that this atomically thin material indeed exhibits possibly the largest nonlinear coefficients of any material known to date, paving the way for practical graphene-based applications in ultrafast (opto-)electronics operating at THz rates. Here the advances in the booming field of nonlinear THz optics of graphene are reported, and the state-of-the-art understanding of the nature of the nonlinear interaction of graphene with the THz fields based on the thermodynamic model of electron transport in graphene is described. A comparison between different mechanisms of nonlinear interaction of graphene with light fields in THz, infrared, and visible frequency ranges is also provided. Finally, the perspectives for the expected technological applications of graphene based on its extraordinary THz nonlinear properties are summarized. This report covers the evolution of the field of THz nonlinear optics of graphene from the very pioneering to the state-of-the-art works. It also serves as a concise overview of the current understanding of THz nonlinear optics of graphene and as a compact reference for researchers entering the field, as well as for the technology developers

    Thickness-dependent elastic softening of few-layer free-standing MoSe2

    Get PDF
    Few-layer van der Waals (vdW) materials have been extensively investigated in terms of their exceptional electronic, optoelectronic, optical, and thermal properties. Simultaneously, a complete evaluation of their mechanical properties remains an undeniable challenge due to the small lateral sizes of samples and the limitations of experimental tools. In particular, there is no systematic experimental study providing unambiguous evidence on whether the reduction of vdW thickness down to few layers results in elastic softening or stiffening with respect to the bulk. In this work, micro-Brillouin light scattering is employed to investigate the anisotropic elastic properties of single-crystal free-standing 2H-MoSe as a function of thickness, down to three molecular layers. The so-called elastic size effect, that is, significant and systematic elastic softening of the material with decreasing numbers of layers is reported. In addition, this approach allows for a complete mechanical examination of few-layer membranes, that is, their elasticity, residual stress, and thickness, which can be easily extended to other vdW materials. The presented results shed new light on the ongoing debate on the elastic size-effect and are relevant for performance and durability of implementation of vdW materials as resonators, optoelectronic, and thermoelectric devices

    Surface-Specific Spectroscopy of Water at a Potentiostatically Controlled Supported Graphene Monolayer

    Get PDF
    Knowledge of the structure of interfacial water molecules at electrified solid materials is the first step toward a better understanding of important processes at such surfaces, in, e.g., electrochemistry, atmospheric chemistry, and membrane biophysics. As graphene is an interesting material with multiple potential applications such as in transistors or sensors, we specifically investigate the graphene-water interface. We use sum-frequency generation spectroscopy to investigate the pH- and potential-dependence of the interfacial water structure in contact with a chemical vapor deposited (CVD) grown graphene surface. Our results show that the SFG signal from the interfacial water molecules at the graphene layer is dominated by the underlying substrate and that there are water molecules between the graphene and the (hydrophilic) supporting substrate

    Microscopic understanding of the in-plane thermal transport properties of 2H transition metal dichalcogenides

    Get PDF
    Transition metal dichalcogenides (TMDs) are a class of layered materials that hold great promise for a wide range of applications. Their practical use can be limited by their thermal transport properties, which have proven challenging to determine accurately, both from a theoretical and experimental perspective. We have conducted a thorough theoretical investigation of the thermal conductivity of four common TMDs, MoSe2, WSe2, MoS2, and WS2, at room temperature, to determine the key factors that influence their thermal behavior. We analyze these materials using ab initio calculations performed with the siesta program, anharmonic lattice dynamics and the Boltzmann transport equation formalism, as implemented in the temperature-dependent effective potentials method. Within this framework, we analyze the microscopic parameters influencing the thermal conductivity, such as the phonon dispersion and the phonon lifetimes. The aim is to precisely identify the origin of differences in thermal conductivity among these canonical TMD materials. We compare their in-plane thermal properties in monolayer and bulk form, and we analyze how the thickness and the chemical composition affect the thermal transport behavior. We showcase how bonding and the crystal structure influence the thermal properties by comparing the TMDs with silicon, reporting the cases of bulk silicon and monolayer silicene. We find that the interlayer bond type (covalent vs. van der Waals) involved in the structure is crucial in the heat transport. In two-dimensional silicene, we observe a reduction by a factor ∼15 compared to the Si bulk thermal conductivity due to the smaller group velocities and shorter phonon lifetimes. In the TMDs, where the group velocities and the phonon bands do not vary significantly passing from the bulk to the monolayer limit, we do not see as strong a decrease in the thermal conductivity: only a factor 2-3. Moreover, our analysis reveals that differences in the thermal conductivity arise from variations in atomic species, bond strengths, and phonon lifetimes. These factors are closely interconnected and collectively impact the overall thermal conductivity. We inspect each of them separately and explain how they influence the heat transport. We also study artificial TMDs with modified masses, in order to assess how the chemistry of the compounds modifies the microscopic quantities and thus the thermal conductivity.</p

    Microscopic understanding of the in-plane thermal transport properties of 2H transition metal dichalcogenides

    Get PDF
    Transition metal dichalcogenides (TMDs) are a class of layered materials that hold great promise for a wide range of applications. Their practical use can be limited by their thermal transport properties, which have proven challenging to determine accurately, both from a theoretical and experimental perspective. We have conducted a thorough theoretical investigation of the thermal conductivity of four common TMDs, MoSe2, WSe2, MoS2, and WS2, at room temperature, to determine the key factors that influence their thermal behavior. We analyze these materials using ab initio calculations performed with the siesta program, anharmonic lattice dynamics and the Boltzmann transport equation formalism, as implemented in the temperature-dependent effective potentials method. Within this framework, we analyze the microscopic parameters influencing the thermal conductivity, such as the phonon dispersion and the phonon lifetimes. The aim is to precisely identify the origin of differences in thermal conductivity among these canonical TMD materials. We compare their in-plane thermal properties in monolayer and bulk form, and we analyze how the thickness and the chemical composition affect the thermal transport behavior. We showcase how bonding and the crystal structure influence the thermal properties by comparing the TMDs with silicon, reporting the cases of bulk silicon and monolayer silicene. We find that the interlayer bond type (covalent vs. van der Waals) involved in the structure is crucial in the heat transport. In two-dimensional silicene, we observe a reduction by a factor ∼15 compared to the Si bulk thermal conductivity due to the smaller group velocities and shorter phonon lifetimes. In the TMDs, where the group velocities and the phonon bands do not vary significantly passing from the bulk to the monolayer limit, we do not see as strong a decrease in the thermal conductivity: only a factor 2-3. Moreover, our analysis reveals that differences in the thermal conductivity arise from variations in atomic species, bond strengths, and phonon lifetimes. These factors are closely interconnected and collectively impact the overall thermal conductivity. We inspect each of them separately and explain how they influence the heat transport. We also study artificial TMDs with modified masses, in order to assess how the chemistry of the compounds modifies the microscopic quantities and thus the thermal conductivity.</p

    Electrical tunability of terahertz nonlinearity in graphene

    Get PDF
    Graphene is conceivably the most nonlinear optoelectronic material we know. Its nonlinear optical coefficients in the terahertz frequency range surpass those of other materials by many orders of magnitude. Here, we show that the terahertz nonlinearity of graphene, both for ultrashort single-cycle and quasi-monochromatic multicycle input terahertz signals, can be efficiently controlled using electrical gating, with gating voltages as low as a few volts. For example, optimal electrical gating enhances the power conversion efficiency in terahertz third-harmonic generation in graphene by about two orders of magnitude. Our experimental results are in quantitative agreement with a physical model of the graphene nonlinearity, describing the time-dependent thermodynamic balance maintained within the electronic population of graphene during interaction with ultrafast electric fields. Our results can serve as a basis for straightforward and accurate design of devices and applications for efficient electronic signal processing in graphene at ultrahigh frequencies.D.T. and H.A.H. acknowledge funding from the European Union’s Horizon 2020 Framework Programme under grant agreement no. 964735 (EXTREME-IR). M.G. and B.G. acknowledge support from the European Cluster of Advanced Laser Light Sources (EUCALL) project that has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 654220. K.-J.T. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 804349 (ERC StG CUHL) and financial support through the MAINZ Visiting Professorship. ICN2 was supported by the Severo Ochoa program from Spanish MINECO (grant no. SEV-2017-0706). Parts of this research were carried out at ELBE at the Helmholtz-Zentrum Dresden-Rossendorf e.V., a member of the Helmholtz Association. F.H.L.K. acknowledges support from the Government of Spain (FIS2016-81044; Severo Ochoa CEX2019-000910-S), Fundació Cellex, Fundació Mir-Puig, and Generalitat de Catalunya (CERCA, AGAUR, and SGR 1656). Furthermore, the research leading to these results has received funding from the European Union’s Horizon 2020 under grant agreement no. 881603 (Graphene Flagship Core 3)
    • …
    corecore