49 research outputs found

    Gravitational-Wave Recoil from the Ringdown Phase of Coalescing Black Hole Binaries

    Full text link
    The gravitational recoil or "kick" of a black hole formed from the merger of two orbiting black holes, and caused by the anisotropic emission of gravitational radiation, is an astrophysically important phenomenon. We combine (i) an earlier calculation, using post-Newtonian theory, of the kick velocity accumulated up to the merger of two non-spinning black holes, (ii) a "close-limit approximation" calculation of the radiation emitted during the ringdown phase, and based on a solution of the Regge-Wheeler and Zerilli equations using initial data accurate to second post-Newtonian order. We prove that ringdown radiation produces a significant "anti-kick". Adding the contributions due to inspiral, merger and ringdown phases, our results for the net kick velocity agree with those from numerical relativity to 10-15 percent over a wide range of mass ratios, with a maximum velocity of 180 km/s at a mass ratio of 0.38.Comment: 9 pages, 5 figures; to appear in Class. Quant. Gra

    Spin–orbit precession for eccentric black hole binaries at first order in the mass ratio

    Get PDF
    We consider spin–orbit ('geodetic') precession for a compact binary in strong-field gravity. Specifically, we compute ψ, the ratio of the accumulated spin-precession and orbital angles over one radial period, for a spinning compact body of mass m 1 and spin s 1, with s1≪Gm12/c{{s}_{1}}\ll Gm_{1}^{2}/c , orbiting a non-rotating black hole. We show that ψ can be computed for eccentric orbits in both the gravitational self-force and post-Newtonian frameworks, and that the results appear to be consistent. We present a post-Newtonian expansion for ψ at next-to-next-to-leading order, and a Lorenz-gauge gravitational self-force calculation for ψ at first order in the mass ratio. The latter provides new numerical data in the strong-field regime to inform the effective one-body model of the gravitational two-body problem. We conclude that ψ complements the Detweiler redshift z as a key invariant quantity characterizing eccentric orbits in the gravitational two-body problem

    Modeling Gravitational Recoil Using Numerical Relativity

    Full text link
    We review the developments in modeling gravitational recoil from merging black-hole binaries and introduce a new set of 20 simulations to test our previously proposed empirical formula for the recoil. The configurations are chosen to represent generic binaries with unequal masses and precessing spins. Results of these simulations indicate that the recoil formula is accurate to within a few km/s in the similar mass-ratio regime for the out-of-plane recoil.Comment: corrections to text, 11 pages, 1 figur

    The Current Status of Binary Black Hole Simulations in Numerical Relativity

    Full text link
    Since the breakthroughs in 2005 which have led to long term stable solutions of the binary black hole problem in numerical relativity, much progress has been made. I present here a short summary of the state of the field, including the capabilities of numerical relativity codes, recent physical results obtained from simulations, and improvements to the methods used to evolve and analyse binary black hole spacetimes.Comment: 14 pages; minor changes and corrections in response to referee

    Three little pieces for computer and relativity

    Full text link
    Numerical relativity has made big strides over the last decade. A number of problems that have plagued the field for years have now been mostly solved. This progress has transformed numerical relativity into a powerful tool to explore fundamental problems in physics and astrophysics, and I present here three representative examples. These "three little pieces" reflect a personal choice and describe work that I am particularly familiar with. However, many more examples could be made.Comment: 42 pages, 11 figures. Plenary talk at "Relativity and Gravitation: 100 Years after Einstein in Prague", June 25 - 29, 2012, Prague, Czech Republic. To appear in the Proceedings (Edition Open Access). Collects results appeared in journal articles [72,73, 122-124

    Research Update on Extreme-Mass-Ratio Inspirals

    Get PDF
    The inspirals of stellar-mass mass compact objects into massive black holes in the centres of galaxies are one of the most important sources of gravitational radiation for space-based detectors like LISA or eLISA. These extreme-mass-ratio inspirals (EMRIs) will enable an ambitious research program with implications for astrophysics, cosmology, and fundamental physics. This article is a summary of the talks delivered at the plenary session on EMRIs at the 10th International LISA Symposium. It contains research updates on the following topics: astrophysics of EMRIs; EMRI science potential; and EMRI modeling.Comment: 17 pages, no figures. Proceedings of the LISA Symposium X, to be published at the Journal of Physic

    Self-force: Computational Strategies

    Full text link
    Building on substantial foundational progress in understanding the effect of a small body's self-field on its own motion, the past 15 years has seen the emergence of several strategies for explicitly computing self-field corrections to the equations of motion of a small, point-like charge. These approaches broadly fall into three categories: (i) mode-sum regularization, (ii) effective source approaches and (iii) worldline convolution methods. This paper reviews the various approaches and gives details of how each one is implemented in practice, highlighting some of the key features in each case.Comment: Synchronized with final published version. Review to appear in "Equations of Motion in Relativistic Gravity", published as part of the Springer "Fundamental Theories of Physics" series. D. Puetzfeld et al. (eds.), Equations of Motion in Relativistic Gravity, Fundamental Theories of Physics 179, Springer, 201

    Spin and quadrupole contributions to the motion of astrophysical binaries

    Full text link
    Compact objects in general relativity approximately move along geodesics of spacetime. It is shown that the corrections to geodesic motion due to spin (dipole), quadrupole, and higher multipoles can be modeled by an extension of the point mass action. The quadrupole contributions are discussed in detail for astrophysical objects like neutron stars or black holes. Implications for binaries are analyzed for a small mass ratio situation. There quadrupole effects can encode information about the internal structure of the compact object, e.g., in principle they allow a distinction between black holes and neutron stars, and also different equations of state for the latter. Furthermore, a connection between the relativistic oscillation modes of the object and a dynamical quadrupole evolution is established.Comment: 43 pages. Proceedings of the 524. WE-Heraeus-Seminar "Equations of Motion in Relativistic Gravity". v2: fixed reference. v3: corrected typos in eqs. (1), (57), (85

    Risk factors for virological failure and subtherapeutic antiretroviral drug concentrations in HIV-positive adults treated in rural northwestern Uganda

    Get PDF
    ABSTRACT: BACKGROUND: Little is known about immunovirological treatment outcomes and adherence in HIV/AIDS patients on antiretroviral therapy (ART) treated using a simplified management approach in rural areas of developing countries, or about the main factors influencing those outcomes in clinical practice. METHODS: Cross-sectional immunovirological, pharmacological, and adherence outcomes were evaluated in all patients alive and on fixed-dose ART combinations for 24 months, and in a random sample of those treated for 12 months. Risk factors for virological failure (>1,000 copies/mL) and subtherapeutic antiretroviral (ARV) concentrations were investigated with multiple logistic regression. RESULTS: At 12 and 24 months of ART, 72% (n=701) and 70% (n=369) of patients, respectively, were alive and in care. About 8% and 38% of patients, respectively, were diagnosed with immunological failure; and 75% and 72% of patients, respectively, had undetectable HIV RNA (<400 copies/mL). Risk factors for virological failure (>1,000 copies/mL) were poor adherence, tuberculosis diagnosed after ART initiation, subtherapeutic NNRTI concentrations, general clinical symptoms, and lower weight than at baseline. About 14% of patients had low ARV plasma concentrations. Digestive symptoms and poor adherence to ART were risk factors for low ARV plasma concentrations. CONCLUSIONS: Efforts to improve both access to care and patient management to achieve better immunological and virological outcomes on ART are necessary to maximize the duration of first-line therapy
    corecore