241 research outputs found
Recommended from our members
X-Ray Scattering Studies of the SiO/Si(001) Interfacial Structure
X‐ray scattering has been utilized in a study of the SiO/Si(001) interfacial structure. Scattering data provide evidence for a low coverage 2×1 epitaxial structure at the SiO/Si interface for dry oxides grown on highly ordered Si surfaces at room temperature. The observed scattering is consistent with distorted dimer models of the interfacial structure. Thermal annealing substantially reduces the order of the 2×1 structure while prolonged exposure to humid air almost eliminates the 2×1 symmetry scattering. These findings suggest that the observed 2×1 order is associated with a metastable, intermediate state of the dry oxidation process.Engineering and Applied Science
Recommended from our members
X‐Ray Reflectivity Studies of SiO/Si(001)
X‐ray reflectivity has been utilized in a study of the SiO/Si interfacial structure for dry oxides grown at room temperature on highly ordered Si(001) surfaces. Scattering near (110) demonstrates the Si lattice termination of the wafers studied is characterized by a highly ordered array of terraces separated by monoatomic steps. Specular reflectivity data indicate the ‘‘native’’ dry oxide thickness is approximately 5 Å with a 1‐Å vacuum interface width. Residual laminar order in the oxide electron density along the oxide/Si interfacial normal decays exponentially from the oxide/Si interface with a 2.7‐Å decay length.Engineering and Applied Science
CD14+ CD15- HLA-DR- myeloid-derived suppressor cells impair antimicrobial responses in patients with acute-on-chronic liver failure.
OBJECTIVE: Immune paresis in patients with acute-on-chronic liver failure (ACLF) accounts for infection susceptibility and increased mortality. Immunosuppressive mononuclear CD14+HLA-DR- myeloid-derived suppressor cells (M-MDSCs) have recently been identified to quell antimicrobial responses in immune-mediated diseases. We sought to delineate the function and derivation of M-MDSC in patients with ACLF, and explore potential targets to augment antimicrobial responses. DESIGN: Patients with ACLF (n=41) were compared with healthy subjects (n=25) and patients with cirrhosis (n=22) or acute liver failure (n=30). CD14+CD15-CD11b+HLA-DR- cells were identified as per definition of M-MDSC and detailed immunophenotypic analyses were performed. Suppression of T cell activation was assessed by mixed lymphocyte reaction. Assessment of innate immune function included cytokine expression in response to Toll-like receptor (TLR-2, TLR-4 and TLR-9) stimulation and phagocytosis assays using flow cytometry and live cell imaging-based techniques. RESULTS: Circulating CD14+CD15-CD11b+HLA-DR- M-MDSCs were markedly expanded in patients with ACLF (55% of CD14+ cells). M-MDSC displayed immunosuppressive properties, significantly decreasing T cell proliferation (p=0.01), producing less tumour necrosis factor-alpha/interleukin-6 in response to TLR stimulation (all p<0.01), and reduced bacterial uptake of Escherichia coli (p<0.001). Persistently low expression of HLA-DR during disease evolution was linked to secondary infection and 28-day mortality. Recurrent TLR-2 and TLR-4 stimulation expanded M-MDSC in vitro. By contrast, TLR-3 agonism reconstituted HLA-DR expression and innate immune function ex vivo. CONCLUSION: Immunosuppressive CD14+HLA-DR- M-MDSCs are expanded in patients with ACLF. They were depicted by suppressing T cell function, attenuated antimicrobial innate immune responses, linked to secondary infection, disease severity and prognosis. TLR-3 agonism reversed M-MDSC expansion and innate immune function and merits further evaluation as potential immunotherapeutic agent
Recommended from our members
X-Ray Grazing Incidence Diffraction from Alkylsiloxane Monolayers on Silicon Wafers
X‐ray reflection (both specular and off‐specular) and grazing incidence diffraction (GID) have been used to study the structure of alkylsiloxane monolayers () formed by self‐assembly from solution on silicon wafers. GID studies of complete monolayers reveal a single ring of scattering associated with the monolayer. The Lorentzian line shape of this ring indicates that the film is characterized by liquidlike order, with a typical translational correlation length of about 45 Å. The thermal coefficient of expansion of the monolayer, as determined from the GID peak position, is approximately equal to the value for liquid n‐alkanes. Upon either heating or cooling, the monolayer correlation lengths decrease, suggesting that the differential thermal‐expansion coefficients of the film and substrate figure prominently in thermal changes of the molecular ordering. GID data for incomplete monolayers also reveal a single ring of scattering associated with the monolayer. While both the translational correlation lengths and integrated peak areas are significantly reduced relative to complete monolayers, the peak positions of the incomplete monolayers are comparable to those of complete monolayers. Given the lower average areal density of incomplete monolayers, this finding implies that incomplete monolayers are inhomogeneous.Engineering and Applied Science
A direct D-bar reconstruction algorithm for recovering a complex conductivity in 2-D
A direct reconstruction algorithm for complex conductivities in
, where is a bounded, simply connected Lipschitz
domain in , is presented. The framework is based on the
uniqueness proof by Francini [Inverse Problems 20 2000], but equations relating
the Dirichlet-to-Neumann to the scattering transform and the exponentially
growing solutions are not present in that work, and are derived here. The
algorithm constitutes the first D-bar method for the reconstruction of
conductivities and permittivities in two dimensions. Reconstructions of
numerically simulated chest phantoms with discontinuities at the organ
boundaries are included.Comment: This is an author-created, un-copyedited version of an article
accepted for publication in [insert name of journal]. IOP Publishing Ltd is
not responsible for any errors or omissions in this version of the manuscript
or any version derived from it. The Version of Record is available online at
10.1088/0266-5611/28/9/09500
Plasmacytoid dendritic cells orchestrate innate and adaptive anti-tumor immunity induced by oncolytic coxsackievirus A21
Background:
The oncolytic virus, coxsackievirus A21 (CVA21), has shown promise as a single agent in several clinical trials and is now being tested in combination with immune checkpoint blockade. Combination therapies offer the best chance of disease control; however, the design of successful combination strategies requires a deeper understanding of the mechanisms underpinning CVA21 efficacy, in particular, the role of CVA21 anti-tumor immunity. Therefore, this study aimed to examine the ability of CVA21 to induce human anti-tumor immunity, and identify the cellular mechanism responsible.
Methods:
This study utilized peripheral blood mononuclear cells from i) healthy donors, ii) Acute Myeloid Leukemia (AML) patients, and iii) patients taking part in the STORM clinical trial, who received intravenous CVA21; patients receiving intravenous CVA21 were consented separately in accordance with local institutional ethics review and approval. Collectively, these blood samples were used to characterize the development of innate and adaptive anti-tumor immune responses following CVA21 treatment.
Results:
An Initial characterization of peripheral blood mononuclear cells, collected from cancer patients following intravenous infusion of CVA21, confirmed that CVA21 activated immune effector cells in patients. Next, using hematological disease models which were sensitive (Multiple Myeloma; MM) or resistant (AML) to CVA21-direct oncolysis, we demonstrated that CVA21 stimulated potent anti-tumor immune responses, including: 1) cytokine-mediated bystander killing; 2) enhanced natural killer cell-mediated cellular cytotoxicity; and 3) priming of tumor-specific cytotoxic T lymphocytes, with specificity towards known tumor-associated antigens. Importantly, immune-mediated killing of both MM and AML, despite AML cells being resistant to CVA21-direct oncolysis, was observed. Upon further examination of the cellular mechanisms responsible for CVA21-induced anti-tumor immunity we have identified the importance of type I IFN for NK cell activation, and demonstrated that both ICAM-1 and plasmacytoid dendritic cells were key mediators of this response.
Conclusion:
This work supports the development of CVA21 as an immunotherapeutic agent for the treatment of both AML and MM. Additionally, the data presented provides an important insight into the mechanisms of CVA21-mediated immunotherapy to aid the development of clinical biomarkers to predict response and rationalize future drug combinations
Intravenous Oncolytic Vaccinia Virus Therapy Results in a Differential Immune Response between Cancer Patients
Pexa-Vec is an engineered Wyeth-strain vaccinia oncolytic virus (OV), which has been tested extensively in clinical trials, demonstrating enhanced cytotoxic T cell infiltration into tumours following treatment. Favourable immune consequences to Pexa-Vec include the induction of an interferon (IFN) response, followed by inflammatory cytokine/chemokine secretion. This promotes tumour immune infiltration, innate and adaptive immune cell activation and T cell priming, culminating in targeted tumour cell killing, i.e., an immunologically ‘cold’ tumour microenvironment is transformed into a ‘hot’ tumour. However, as with all immunotherapies, not all patients respond in a uniformly favourable manner. Our study herein, shows a differential immune response by patients to intravenous Pexa-Vec therapy, whereby some patients responded to the virus in a typical and expected manner, demonstrating a significant IFN induction and subsequent peripheral immune activation. However, other patients experienced a markedly subdued immune response and appeared to exhibit an exhausted phenotype at baseline, characterised by higher baseline immune checkpoint expression and regulatory T cell (Treg) levels. This differential baseline immunological profile accurately predicted the subsequent response to Pexa-Vec and may, therefore, enable the development of predictive biomarkers for Pexa-Vec and OV therapies more widely. If confirmed in larger clinical trials, these immunological biomarkers may enable a personalised approach, whereby patients with an exhausted baseline immune profile are treated with immune checkpoint blockade, with the aim of reversing immune exhaustion, prior to or alongside OV therapy
- …