507 research outputs found
Numerical stability of the AA evolution system compared to the ADM and BSSN systems
We explore the numerical stability properties of an evolution system
suggested by Alekseenko and Arnold. We examine its behavior on a set of
standardized testbeds, and we evolve a single black hole with different gauges.
Based on a comparison with two other evolution systems with well-known
properties, we discuss some of the strengths and limitations of such simple
tests in predicting numerical stability in general.Comment: 16 pages, 12 figure
Many-particle interference beyond many-boson and many-fermion statistics
Identical particles exhibit correlations even in the absence of
inter-particle interaction, due to the exchange (anti)symmetry of the
many-particle wavefunction. Two fermions obey the Pauli principle and
anti-bunch, whereas two bosons favor bunched, doubly occupied states. Here, we
show that the collective interference of three or more particles leads to a
much more diverse behavior than expected from the boson-fermion dichotomy known
from quantum statistical mechanics. The emerging complexity of many-particle
interference is tamed by a simple law for the strict suppression of events in
the Bell multiport beam splitter. The law shows that counting events are
governed by widely species-independent interference, such that bosons and
fermions can even exhibit identical interference signatures, while their
statistical character remains subordinate. Recent progress in the preparation
of tailored many-particle states of bosonic and fermionic atoms promises
experimental verification and applications in novel many-particle
interferometers.Comment: 12 pages, 5 figure
Radiation content of Conformally flat initial data
We study the radiation of energy and linear momentum emitted to infinity by
the headon collision of binary black holes, starting from rest at a finite
initial separation, in the extreme mass ratio limit. For these configurations
we identify the radiation produced by the initially conformally flat choice of
the three geometry. This identification suggests that the radiated energy and
momentum of headon collisions will not be dominated by the details of the
initial data for evolution of holes from initial proper separations
. For non-headon orbits, where the amount of radiation is orders of
magnitude larger, the conformally flat initial data may provide a relative even
better approximation.Comment: 4 pages, 4 figure
Parity-Affected Superconductivity in Ultrasmall Metallic Grains
We investigate the breakdown of BCS superconductivity in {\em ultra}\/small
metallic grains as a function of particle size (characterized by the mean
spacing between discrete electronic eigenstates), and the parity ( =
even/odd) of the number of electrons on the island. Assuming equally spaced
levels, we solve the parity-dependent BCS gap equation for the order parameter
. Both the critical level spacing and the
critical temperature at which are parity
dependent, and both are so much smaller in the odd than the even case that
these differences should be measurable in current experiments.Comment: 4 pages RevTeX, 1 encapsulated postscript figure, submitted to
Physical Review Letter
Status of NINJA: the Numerical INJection Analysis project
The 2008 NRDA conference introduced the Numerical INJection Analysis project (NINJA), a new collaborative effort between the numerical relativity community and the data analysis community. NINJA focuses on modeling and searching for gravitational wave signatures from the coalescence of binary system of compact objects. We review the scope of this collaboration and the components of the first NINJA project, where numerical relativity groups shared waveforms and data analysis teams applied various techniques to detect them when embedded in colored Gaussian noise
Vacuum Energy Density Fluctuations in Minkowski and Casimir States via Smeared Quantum Fields and Point Separation
We present calculations of the variance of fluctuations and of the mean of
the energy momentum tensor of a massless scalar field for the Minkowski and
Casimir vacua as a function of an intrinsic scale defined by a smeared field or
by point separation. We point out that contrary to prior claims, the ratio of
variance to mean-squared being of the order unity is not necessarily a good
criterion for measuring the invalidity of semiclassical gravity. For the
Casimir topology we obtain expressions for the variance to mean-squared ratio
as a function of the intrinsic scale (defined by a smeared field) compared to
the extrinsic scale (defined by the separation of the plates, or the
periodicity of space). Our results make it possible to identify the spatial
extent where negative energy density prevails which could be useful for
studying quantum field effects in worm holes and baby universe, and for
examining the design feasibility of real-life `time-machines'.
For the Minkowski vacuum we find that the ratio of the variance to the
mean-squared, calculated from the coincidence limit, is identical to the value
of the Casimir case at the same limit for spatial point separation while
identical to the value of a hot flat space result with a temporal
point-separation. We analyze the origin of divergences in the fluctuations of
the energy density and discuss choices in formulating a procedure for their
removal, thus raising new questions into the uniqueness and even the very
meaning of regularization of the energy momentum tensor for quantum fields in
curved or even flat spacetimes when spacetime is viewed as having an extended
structure.Comment: 41 pages, 2 figure
Overview on the phenomenon of two-qubit entanglement revivals in classical environments
The occurrence of revivals of quantum entanglement between separated open
quantum systems has been shown not only for dissipative non-Markovian quantum
environments but also for classical environments in absence of back-action.
While the phenomenon is well understood in the first case, the possibility to
retrieve entanglement when the composite quantum system is subject to local
classical noise has generated a debate regarding its interpretation. This
dynamical property of open quantum systems assumes an important role in quantum
information theory from both fundamental and practical perspectives. Hybrid
quantum-classical systems are in fact promising candidates to investigate the
interplay among quantum and classical features and to look for possible control
strategies of a quantum system by means of a classical device. Here we present
an overview on this topic, reporting the most recent theoretical and
experimental results about the revivals of entanglement between two qubits
locally interacting with classical environments. We also review and discuss the
interpretations provided so far to explain this phenomenon, suggesting that
they can be cast under a unified viewpoint.Comment: 16 pages, 9 figures. Chapter written for the upcoming book "Lectures
on general quantum correlations and their applications
What we talk about when we talk about "global mindset": managerial cognition in multinational corporations
Recent developments in the global economy and in multinational corporations have placed significant emphasis on the cognitive orientations of managers, giving rise to a number of concepts such as âglobal mindsetâ that are presumed to be associated with the effective management of multinational corporations (MNCs). This paper reviews the literature on global mindset and clarifies some of the conceptual confusion surrounding the construct. We identify common themes across writers, suggesting that the majority of studies fall into one of three research perspectives: cultural, strategic, and multidimensional. We also identify two constructs from the social sciences that underlie the perspectives found in the literature: cosmopolitanism and cognitive complexity and use these two constructs to develop an integrative theoretical framework of global mindset. We then provide a critical assessment of the field of global mindset and suggest directions for future theoretical and empirical research
From Geometry to Numerics: interdisciplinary aspects in mathematical and numerical relativity
This article reviews some aspects in the current relationship between
mathematical and numerical General Relativity. Focus is placed on the
description of isolated systems, with a particular emphasis on recent
developments in the study of black holes. Ideas concerning asymptotic flatness,
the initial value problem, the constraint equations, evolution formalisms,
geometric inequalities and quasi-local black hole horizons are discussed on the
light of the interaction between numerical and mathematical relativists.Comment: Topical review commissioned by Classical and Quantum Gravity.
Discussion inspired by the workshop "From Geometry to Numerics" (Paris, 20-24
November, 2006), part of the "General Relativity Trimester" at the Institut
Henri Poincare (Fall 2006). Comments and references added. Typos corrected.
Submitted to Classical and Quantum Gravit
- âŠ