64 research outputs found

    Selective epitaxial growth of graphene on SiC

    Full text link
    We present an innovative method of selective epitaxial growth of few layers graphene (FLG) on a pre-patterned SiC substrate. The methods involves, successively, the sputtering of a thin AlN layer on top of a mono-crystalline SiC substrate and, then, patterning it with e-beam lithography (EBL) and wet etching. The sublimation of few atomic layers of Si from the SiC substrate occurs only through the selectively etched AlN layer. The presence of the Raman G-band at ~1582 cm-1 in the AlN-free areas is used to validate the concept, it gives absolute evidence of the selective FLG growth.Comment: comments: 3 pages, reference 3 replace

    Controlled epitaxial graphene growth within amorphous carbon corrals

    Full text link
    Structured growth of high quality graphene is necessary for technological development of carbon based electronics. Specifically, control of the bunching and placement of surface steps under epitaxial graphene on SiC is an important consideration for graphene device production. We demonstrate lithographically patterned evaporated amorphous carbon corrals as a method to pin SiC surface steps. Evaporated amorphous carbon is an ideal step-flow barrier on SiC due to its chemical compatibility with graphene growth and its structural stability at high temperatures, as well as its patternability. The amorphous carbon is deposited in vacuum on SiC prior to graphene growth. In the graphene furnace at temperatures above 1200^\circC, mobile SiC steps accumulate at these amorphous carbon barriers, forming an aligned step free region for graphene growth at temperatures above 1330^\circC. AFM imaging and Raman spectroscopy support the formation of quality step-free graphene sheets grown on SiC with the step morphology aligned to the carbon grid

    Early stage formation of graphene on the C-face of 6H-SiC

    Full text link
    An investigation of the early stage formation of graphene on the C-face of 6H-SiC is presented. We show that the sublimation of few atomic layers of Si out of the SiC substrate is not homogeneous. In good agreement with the results of theoretical calculations it starts from defective sites, mainly dislocations that define nearly circular flakes, which have a pyramidal, volcano-like, shape with a center chimney where the original defect was located. At higher temperatures, complete conversion occurs but, again, it is not homogeneous. Within the sample surface the intensity of the Raman G and 2D bands, evidences non-homogeneous thickness.Comment: 12 pages, 3 figure

    Investigation of Long Monolayer Graphene Ribbons grown on Graphite Capped 6H-SiC (000-1)

    Full text link
    We present an investigation of large, isolated, graphene ribbons grown on the C-face of on-axis semi-insulating 6H-SiC wafers. Using a graphite cap to cover the SiC sample, we modify the desorption of the Si species during the Si sublimation process. This results in a better control of the growth kinetics, yielding very long (about 300 microns long, 5 microns wide), homogeneous monolayer graphene ribbons. These ribbons fully occupy unusually large terraces on the step bunched SiC surface, as shown by AFM, optical microscopy and SEM. Raman spectrometry indicates that the thermal stress has been partially relaxed by wrinkles formation, visible in AFM images. In addition, we show that despite the low optical absorption of graphene, optical differential transmission can be successfully used to prove the monolayer character of the ribbons

    Micro-Raman and micro-transmission imaging of epitaxial graphene grown on the Si and C faces of 6H-SiC

    Get PDF
    Micro-Raman and micro-transmission imaging experiments have been done on epitaxial graphene grown on the C- and Si-faces of on-axis 6H-SiC substrates. On the C-face it is shown that the SiC sublimation process results in the growth of long and isolated graphene ribbons (up to 600 μm) that are strain-relaxed and lightly p-type doped. In this case, combining the results of micro-Raman spectroscopy with micro-transmission measurements, we were able to ascertain that uniform monolayer ribbons were grown and found also Bernal stacked and misoriented bilayer ribbons. On the Si-face, the situation is completely different. A full graphene coverage of the SiC surface is achieved but anisotropic growth still occurs, because of the step-bunched SiC surface reconstruction. While in the middle of reconstructed terraces thin graphene stacks (up to 5 layers) are grown, thicker graphene stripes appear at step edges. In both the cases, the strong interaction between the graphene layers and the underlying SiC substrate induces a high compressive thermal strain and n-type doping
    corecore