33 research outputs found

    Doping and energy evolution of spin dynamics in the electron-doped cuprate superconductor Pr0.88_{0.88}LaCe0.12_{0.12}CuO4−δ_{4-\delta}

    Full text link
    The doping and energy evolution of the magnetic excitations of the electron-doped cuprate superconductor Pr0.88_{0.88}LaCe0.12_{0.12}CuO4−δ_{4-\delta} in the superconducting state is studied based on the kinetic energy driven superconducting mechanism. It is shown that there is a broad commensurate scattering peak at low energy, then the resonance energy is located among this low energy commensurate scattering range. This low energy commensurate scattering disperses outward into a continuous ring-like incommensurate scattering at high energy. The theory also predicts a dome shaped doping dependent resonance energy.Comment: 8 pages, 4 figures, added discussions, replotted figures, and updated references, accepted for publication in Phys. Rev.

    Ground state pairing correlation competes in the doped triangular lattice Hubbard model

    No full text
    By using the constrained path quantum Monte carlo method, we study the ground state paring correlations in the t − U − V Hubbard model on the triangular lattice. It is shown that pairings with various symmetries dominate in different electron filling regions. The pairing correlation with fn-wave symmetry dominates over other pairings around half fillings, and as the electron filling decreases away from the half filling, the d + id-wave pairing correlation tends to dominate. As the electron filling is bellow the Van Hove singularity, the f-wave pairing dominates. These crossovers are due to the interplay of electronic correlation and geometric frustration, associating with the competition between the antiferromagnetic correlations and ferromagnetic fluctuations. Our findings reveal the possible magnetic origin of superconductivity, and also provide useful information for the understanding of superconductivity in NaxCoO2·H2O and the organic compounds

    A Survey of Techniques for Constructing Chinese Knowledge Graphs and Their Applications

    No full text
    With the continuous development of intelligent technologies, knowledge graph, the backbone of artificial intelligence, has attracted much attention from both academic and industrial communities due to its powerful capability of knowledge representation and reasoning. In recent years, knowledge graph has been widely applied in different kinds of applications, such as semantic search, question answering, knowledge management and so on. Techniques for building Chinese knowledge graphs are also developing rapidly and different Chinese knowledge graphs have been constructed to support various applications. Under the background of the “One Belt One Road (OBOR)” initiative, cooperating with the countries along OBOR on studying knowledge graph techniques and applications will greatly promote the development of artificial intelligence. At the same time, the accumulated experience of China in developing knowledge graphs is also a good reference to develop non-English knowledge graphs. In this paper, we aim to introduce the techniques of constructing Chinese knowledge graphs and their applications, as well as analyse the impact of knowledge graph on OBOR. We first describe the background of OBOR, and then introduce the concept and development history of knowledge graph and typical Chinese knowledge graphs. Afterwards, we present the details of techniques for constructing Chinese knowledge graphs, and demonstrate several applications of Chinese knowledge graphs. Finally, we list some examples to explain the potential impacts of knowledge graph on OBOR

    Strain induced edge magnetism at zigzag edge of a graphene quantum dot

    No full text
    We study the temperature dependent magnetic susceptibility of a strained graphene quantum dot by using the determinant quantum Monte Carlo method. Within the Hubbard model on a honeycomb lattice, our unbiased numerical results show that a relative small interaction UU may lead to a edge ferromagnetic like behavior in the strained graphene quantum dot, and a possible room temperature transition is suggested. Around half filling, the ferromagnetic fluctuations at the zigzag edge is strengthened both markedly by the on-site Coulomb interaction and the strain, especially in low temperature region. The resultant strongly enhanced ferromagnetic like behavior may be important for the development of many applications.T.M. thanks CAEP for partial financial support. This work is supported by NSFCs (Grants No. 11374034 and No. 11334012), the Fundamental Research Funds for the Central Universities, and is partially supported by the FEDER COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) through Grant PEstC/FIS/UI0607/2013. We acknowledge support from the EC under Graphene Flagship (Contract No. CNECT-ICT-604391)

    Error Assessment for Emerging Traffic Data Collection Devices

    No full text
    Providing accurate and reliable travel time information to roadway users is a critical part of Advanced Traffic Management Systems (ATMS) and Advanced Travelers Information Systems (ATIS). Access to travel time information can significantly influence the decision making on both the supply side (i.e. efficient management of network capacity, saving travel time, reducing congestion etc.) and the demand side (i.e. mode choice, route choice etc.) of transportation. In this context, the need for accurate and reliable travel time information sources is becoming increasingly apparent. Identifying the sensors best suited to providing travel time data for a given corridor is an important step in the process of providing travel time data. Currently, there are very few studies available that evaluate the effectiveness of various travel time data collection technologies side-by-side, thus it is often unclear which approach should be used for a given application. Therefore, a comprehensive overview of existing technologies as well as a side-by-side evaluation will provide more insight into selecting the appropriate technology for a given application. This evaluation is intended to provide decision support for transportation agencies selecting travel time systems based on the accuracy, reliability and cost of each system. Ultimately, each system in the analysis has different strengths and weaknesses that should be considered in addition to their accuracy and sample rates. Some systems can provide additional data; others trade accuracy and coverage for cost or portability. Ultimately, engineers will need to weigh their requirements for accuracy and sample rates against the other engineering constraints imposed on their system. For example, the BlueTOAD units installed on SR 522 and I-90 are solar powered and use cellular data networks, reducing infrastructure and deployment costs. The BlipTrack units have higher sampling rates and marginal accuracy superiority in exchange for power requirements. The Inrix data does not require any DOT infrastructure and has wide availability. ALPR units have high accuracy and a comparatively high installation cost. The Sensys system has perhaps the most complicated set of tradeoffs. Sensys magnetometers can be used as replacements for loop detectors in intersection operations, making the marginal costs of adding Sensys re-identification lower at some intersections than others.Pacific Northwest Transportation Consortiu

    The Synergy of Chicken Anemia Virus and Gyrovirus Homsa 1 in Chickens

    No full text
    Chicken anemia virus (CAV) and Gyrovirus homsa 1 (GyH1) are members of the Gyrovirus genus. The two viruses cause similar clinical manifestations in chickens, aplastic anemia and immunosuppression. Our previous investigation displays that CAV and GyH1 often co-infect chickens. However, whether they have synergistic pathogenicity in chickens remains elusive. Here, we established a co-infection model of CAV and GyH1 in specific pathogen-free (SPF) chickens to explore the synergy between CAV and GyH1. We discovered that CAV and GyH1 significantly inhibited weight gain, increased mortality, and hindered erythropoiesis in co-infected chickens. Co-infected chickens exhibited severe immune organ atrophy and lymphocyte exhaustion. The proventriculus and gizzard had severe hemorrhagic necrosis and inflammation. We also discovered that the viral loads and shedding levels were higher and lasted longer in CAV and GyH1 co-infected chickens than in mono-infected chickens. Our results demonstrate that CAV and GyH1 synergistically promote immunosuppression, pathogenicity, and viral replication in co-infected chicken, highlighting the interaction between CAV and GyH1 in the disease process and increasing potential health risk in the poultry breeding industry, and needs further attention

    Efficient Tandem Addition/Cyclization for Access to 2,4-Diarylquinazolines via Catalytic Carbopalladation of Nitriles

    No full text
    The first example of the palladium-catalyzed tandem addition/cyclization of 2-(benzylidenamino)benzonitriles with arylboronic acids has been developed. This transformation features good functional group tolerance and provides an alternative synthetic pathway to access 2,4-diarylquinazolines in moderate to good yields. A plausible mechanism for the formation of 2,4-diarylquinazolines involving sequential nucleophilic addition followed by an intramolecular cyclization is proposed
    corecore